Markov decision processes, POMDPs

Instructor: Vincent Conitzer
Warmup: a Markov process with rewards

- We derive some reward from the weather each day, but cannot influence it.

- How much utility can we expect in the long run?
 - Depends on discount factor δ
 - Depends on initial state
Figuring out long-term rewards

- Let $v(s)$ be the (long-term) expected utility from being in state s now
- Let $P(s, s')$ be the transition probability from s to s'
- We must have: for all s,

$$v(s) = R(s) + \delta \sum_{s'} P(s, s') v(s')$$

- E.g., $v(c) = 8 + \delta (.4v(s) + .3v(c) + .3v(r))$
- Solve system of linear equations to obtain values for all states
Iteratively updating values

• If we do not want to solve system of equations…
 – E.g., too many states
• … can iteratively update values until convergence
• $v_i(s)$ is value estimate after i iterations
• $v_i(s) = R(s) + \delta \sum_{s'} P(s, s') v_{i-1}(s')$
• Will converge to right values
• If we initialize $v_0=0$ everywhere, then $v_i(s)$ is expected utility with only i steps left (finite horizon)
 – Dynamic program from the future to the present
 – Shows why we get convergence: due to discounting far future does not contribute much
Markov decision process (MDP)

• Like a Markov process, except every round we make a decision

• Transition probabilities depend on actions taken
 \[P(S_{t+1} = s' \mid S_t = s, A_t = a) = P(s, a, s') \]

• Rewards for every state, action pair
 \[R(S_t = s, A_t = a) = R(s, a) \]
 – Sometimes people just use \(R(s) \); \(R(s, a) \) little more convenient sometimes

• Discount factor \(\delta \)
Example MDP

- Machine can be in one of three states: good, deteriorating, broken
- Can take two actions: maintain, ignore
• No time period is different from the others
• Optimal thing to do in state s should not depend on time period
 – … because of infinite horizon
 – With finite horizon, don’t want to maintain machine in last period
• A policy is a function π from states to actions
• Example policy: π (good shape) = ignore, π (deteriorating) = ignore, π (broken) = maintain
Evaluating a policy

• Key observation: $MDP + policy = Markov\ process\ with\ rewards$

• Already know how to evaluate Markov process with rewards: system of linear equations

• Gives algorithm for finding optimal policy: try every possible policy, evaluate
 – Terribly inefficient
Bellman equation

- Suppose you are in state s, and you play optimally from there on
- This leads to expected value $v^*(s)$
- **Bellman equation:**
 \[v^*(s) = \max_a R(s, a) + \delta \sum_{s'} P(s, a, s') v^*(s') \]
- Given v^*, finding optimal policy is easy
Value iteration algorithm for finding optimal policy

- Iteratively update values for states using Bellman equation
- \(v_i(s) \) is our estimate of value of state \(s \) after \(i \) updates
- \(v_{i+1}(s) = \max_a R(s, a) + \delta \sum_{s'} P(s, a, s') v_i(s') \)
- Will converge
- If we initialize \(v_0 = 0 \) everywhere, then \(v_i(s) \) is optimal expected utility with only \(i \) steps left (finite horizon)
 - Again, dynamic program from the future to the present
Policy iteration algorithm for finding optimal policy

- Easy to compute values **given** a policy
 - No max operator
- Alternate between evaluating policy and updating policy:
 - Solve for function v_i based on π_i
 - $\pi_{i+1}(s) = \arg \max_a R(s, a) + \delta \sum_s P(s, a, s') v_i(s')$
- Will converge
Mixing things up

• Do not need to update every state every time
 – Makes sense to focus on states where we will spend most of our time
• In policy iteration, may not make sense to compute state values exactly
 – Will soon change policy anyway
 – Just use some value iteration updates (with fixed policy, as we did earlier)
• Being flexible leads to faster solutions
Linear programming approach

• If only
 \[v^*(s) = \max_a R(s, a) + \delta \sum_{s'} P(s, s', a) v^*(s') \]
 were linear in the \(v^*(s) \)...

• But we can do it as follows:

 • Minimize \[\sum_s v(s) \]
 • Subject to, for all \(s \) and \(a \),
 \[v(s) \geq R(s, a) + \delta \sum_{s'} P(s, s', a) v(s') \]

• Solver will try to push down the \(v(s) \) as far as possible, so that constraints are tight for optimal actions
Partially observable Markov decision processes (POMDPs)

- Markov process + partial observability = HMM
- Markov process + actions = MDP
- Markov process + partial observability + actions = HMM + actions = MDP + partial observability = POMDP
Example POMDP

- Need to specify observations
- E.g., does machine fail on a single job?
- \(P(\text{fail} \mid \text{good shape}) = .1,\ P(\text{fail} \mid \text{deteriorating}) = .2,\ P(\text{fail} \mid \text{broken}) = .9 \)
 - Can also let probabilities depend on action taken
Optimal policies in POMDPs

• Cannot simply use $\pi(s)$ because we do not know s

• We can maintain a probability distribution over s using filtering:

 $P(S_t \mid A_1 = a_1, O_1 = o_1, \ldots, A_{t-1} = a_{t-1}, O_{t-1} = o_{t-1})$

• This gives a belief state b where $b(s)$ is our current probability for s

• Key observation: *policy only needs to depend on* b, $\pi(b)$
Solving a POMDP as an MDP on belief states

• If we think of the belief state as the state, then the state is observable and we have an MDP

\[
(0.3, 0.4, 0.3) \\
(0.5, 0.3, 0.2) \\
(0.2, 0.2, 0.6) \\
(0.4, 0.2, 0.2) \\
(0.6, 0.3, 0.1)
\]

• Now have a large, continuous belief state…
• Much more difficult

Reward for an action from a state = expected reward given belief state

disclaimer: did not actually calculate these numbers…