More search:

When the path to the solution doesn’t matter

Instructor: Vincent Conitzer
Search where the path doesn’t matter

• So far, looked at problems where the path was the solution
 – Traveling on a graph
 – Eights puzzle

• However, in many problems, we just want to find a goal state
 – Doesn’t matter how we get there
Queens puzzle

• Place eight queens on a chessboard so that no two attack each other
Search formulation of the queens puzzle

- **Successors**: all valid ways of placing additional queen on the board; **goal**: eight queens placed

How big is this tree? How many leaves?
Search formulation of the queens puzzle

- **Successors**: all valid ways of placing a queen in the next column; **goal**: eight queens placed

Search tree size?
What kind of search is best?
Constraint satisfaction problems (CSPs)

- Defined by:
 - A set of variables x_1, x_2, \ldots, x_n
 - A domain D_i for each variable x_i
 - Constraints c_1, c_2, \ldots, c_m

- A constraint is specified by
 - A subset (often, two) of the variables
 - All the allowable joint assignments to those variables

- Goal: find a complete, consistent assignment

- Queens problem: (other examples in next slides)
 - x_i in $\{1, \ldots, 8\}$ indicates in which row in the ith column to place a queen
 - For example, constraint on x_1 and x_2: $\{(1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,4), (2,5), \ldots, (3,1), (3,5), \ldots \}$
Graph coloring

• Fixed number of colors; no two adjacent nodes can share a color
Satisfiability

- Formula in conjunctive normal form:
 \((x_1 \lor x_2 \lor \neg(x_4)) \land (\neg(x_2) \lor \neg(x_3)) \land \ldots\)

 - Label each variable \(x_j\) as true or false so that the formula becomes true

Constraint hypergraph: each hyperedge represents a constraint
Cryptarithmetic puzzles

\[
\begin{array}{c}
T \ W \ O \\
\underline{\ T \ W \ O} \ + \\
F \ O \ U \ R
\end{array}
\]

E.g., setting \(F = 1, \ O = 4, \ R = 8, \ T = 7, \ W = 3, \ U = 6 \) gives \(734 + 734 = 1468 \)
Cryptarithmetic puzzles…

Trick: introduce auxiliary variables X, Y

$O + O = 10X + R$

$W + W + X = 10Y + U$

$T + T + Y = 10F + O$

also need pairwise constraints between original variables if they are supposed to be different
Generic approaches to solving CSPs

• State: some variables assigned, others not assigned

• Naïve successors definition: any way of assigning a value to an unassigned variable results in a successor
 – Can check for consistency when expanding
 – How many leaves do we get in the worst case?

• CSPs satisfy commutativity: order in which actions applied does not matter

• Better idea: only consider assignments for a single variable at a time
 – How many leaves?
Choice of variable to branch on is still flexible!

- Do not always need to choose same variable at same level
- Each of variables A, B, C takes values in \{0,1\}

Can you prove that this never increases the size of the tree?
A generic recursive search algorithm

• Search\((\text{assignment}, \text{constraints}) \)
• If \text{assignment} is complete, return it
• Choose an unassigned variable \(x \)
• For every value \(v \) in \(x \)'s domain, if setting \(x \) to \(v \) in \text{assignment} does not violate \text{constraints}:
 – Set \(x \) to \(v \) in \text{assignment}
 – \(\text{result} := \text{Search}(\text{assignment}, \text{constraints}) \)
 – If \(\text{result} \neq \text{failure} \) return \(\text{result} \)
 – Unassign \(x \) in \text{assignment}
• Return \(\text{failure} \)
Keeping track of remaining possible values

- For every variable, keep track of which values are still possible

only one possibility for last column; might as well fill in

now only one left for other two columns

done! (no real branching needed!)

- General heuristic: branch on variable with fewest values remaining
Arc consistency

- Take two variables connected by a constraint
- Is it true that for every remaining value d of the first variable, there exists some value d' of the other variable so that the constraint is satisfied?
 - If so, we say the arc from the first to the second variable is consistent
 - If not, can remove the value d

- General concept: constraint propagation

Is the arc from the fifth to the eighth column consistent?
What about the arc from the eighth to the fifth?
Maintaining arc consistency

• Maintain a queue Q of all ordered pairs of variables with a constraint (arcs) that need to be checked
• Take a pair (x, y) from the queue
• For every value v in x’s domain, check if there is some value w in y’s domain so that $x=v$, $y=w$ is consistent
 – If not, remove v from x’s domain
• If anything was removed from x’s domain, add every arc (z, x) to Q
• Continue until Q is empty

• Runtime?
• n variables, d values per domain
• $O(n^2)$ arcs;
• each arc is added to the queue at most d times;
• consistency of an arc can be checked with d^2 lookups in the constraint’s table;
• so $O(n^2d^3)$ lookups
• Can we do better?
Maintaining arc consistency (2)

• For every arc \((x, y)\), for every value \(v\) for \(x\), maintain the number \(n((x, y), v)\) of remaining values for \(y\) that are consistent with \(x=v\)

• Every time that some \(n((x, y), v) = 0\),
 – remove \(v\) from \(x\)’s domain;
 – for every arc \((z, x)\), for every value \(w\) for \(z\), if \((x=v, z=w)\) is consistent with the constraint, reduce \(n((z, x), w)\) by 1

• Runtime:
 – for every arc \((z, x)\) \((n^2\) of them), a value is removed from \(x\)’s domain at most \(d\) times;
 – each time we have to check for at most \(d\) of \(z\)’s values whether it is consistent with the removed value for \(x\);
 – so \(O(n^2d^2)\) lookups
An example where arc consistency fails

- $A = B$, $B = C$, $C \neq A$ – obviously inconsistent
- However, arc consistency cannot eliminate anything

- $A = B$, $B = C$, $C \neq A$ – obviously inconsistent
 - \sim Moebius band

- However, arc consistency cannot eliminate anything
Tree-structured constraint graphs

- Suppose we only have pairwise constraints and the graph is a tree (or forest = multiple disjoint trees)

- Dynamic program for solving this (linear in #variables):
 - Starting from the leaves and going up, for each node x, compute all the values for x such that the subtree rooted at x can be solved
 - Equivalently: apply arc consistency from each parent to its children, starting from the bottom
 - If no domain becomes empty, once we reach the top, easy to fill in solution
Generalizations of the tree-based approach

• What if our constraint graph is “almost” a tree?

• A cycle cutset is a set of variables whose removal results in a tree (or forest)
 – E.g. \{X_1\}, \{X_6\}, \{X_2, X_3\}, \{X_2, X_4\}, \{X_3, X_4\}

• Simple algorithm: for every internally consistent assignment to the cutset, solve the remaining tree as before (runtime?)

• Graphs of bounded treewidth can also be solved in polynomial time (won’t define these here)
A different approach: optimization

• Let’s say every way of placing 8 queens on a board, one per column, is feasible

• Now we introduce an objective: minimize the number of pairs of queens that attack each other
 – More generally, minimize the number of violated constraints

• Pure optimization
Local search: hill climbing

- Start with a complete state
- Move to successor with best (or at least better) objective value
 - Successor: move one queen within its column

Local search can get stuck in a local optimum

4 attacking pairs → 3 attacking pairs → 2 attacking pairs

no more improvements

local optimum

global optimum (also a local optimum)
Avoiding getting stuck with local search

• Random restarts: if your hill-climbing search fails (or returns a result that may not be optimal), restart at a random point in the search space
 – Not always easy to generate a random state
 – Will eventually succeed (why?)

• Simulated annealing:
 – Generate a random successor (possibly worse than current state)
 – Move to that successor with some probability that is sharply decreasing in the badness of the state
 – Also, over time, as the “temperature decreases,” probability of bad moves goes down
Constraint optimization

• Like a CSP, but with an objective
 – E.g., minimize number of violated constraints
 – Another example: no two queens can be in the same row or column (hard constraint), minimize number of pairs of queens attacking each other diagonally (objective)

• Can use all our techniques from before: heuristics, A*, IDA*, …

• Also popular: depth-first branch-and-bound
 – Like depth-first search, except do not stop when first feasible solution found; keep track of best solution so far
 – Given admissible heuristic, do not need to explore nodes that are worse than best solution found so far
Minimize #violated diagonal constraints

- **Cost of a node**: #violated diagonal constraints so far

- **No heuristic**
 (matter of definition; could just as well say that violated constraints so far is the heuristic and interior nodes have no cost)

Depth first branch and bound will find a suboptimal solution here first (no way to tell at this point this is worse than right node)

A* (=uniform cost here), IDA* (=iterative lengthening here) will never explore this node

Optimal solution is down here (cost 0)
Linear programs: example

- We make reproductions of two paintings

\[
\begin{align*}
\text{maximize} & \quad 3x + 2y \\
\text{subject to} & \quad 4x + 2y \leq 16 \\
& \quad x + 2y \leq 8 \\
& \quad x + y \leq 5 \\
& \quad x \geq 0 \\
& \quad y \geq 0
\end{align*}
\]

- Painting 1 sells for $30, painting 2 sells for $20
- Painting 1 requires 4 units of blue, 1 green, 1 red
- Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red
Solving the linear program graphically

\[\text{maximize } 3x + 2y \]

\[\text{subject to} \]

\[4x + 2y \leq 16 \]

\[x + 2y \leq 8 \]

\[x + y \leq 5 \]

\[x \geq 0 \]

\[y \geq 0 \]

optimal solution: \(x = 3, y = 2 \)
Modified LP

maximize \(3x + 2y \)

subject to

\[4x + 2y \leq 15 \]
\[x + 2y \leq 8 \]
\[x + y \leq 5 \]
\[x \geq 0 \]
\[y \geq 0 \]

Optimal solution: \(x = 2.5, \quad y = 2.5 \)

Solution value = 7.5 + 5 = 12.5

Half paintings?
Integer (linear) program

\[\begin{align*}
\text{maximize} & \quad 3x + 2y \\
\text{subject to} & \quad 4x + 2y \leq 15 \\
& \quad x + 2y \leq 8 \\
& \quad x + y \leq 5 \\
& \quad x \geq 0, \text{ integer} \\
& \quad y \geq 0, \text{ integer}
\end{align*} \]

optimal LP solution: \(x=2.5, \quad y=2.5 \) (objective 12.5)

optimal IP solution: \(x=2, \quad y=3 \) (objective 12)
Mixed integer (linear) program

maximize $3x + 2y$

subject to

$4x + 2y \leq 15$

$x + 2y \leq 8$

$x + y \leq 5$

$x \geq 0$

$y \geq 0$, integer
Solving linear/integer programs

• Linear programs can be solved efficiently
 – Simplex, ellipsoid, interior point methods…

• (Mixed) integer programs are NP-hard to solve
 – Quite easy to model many standard NP-complete problems as integer programs (try it!)
 – Search type algorithms such as branch and bound

• Standard packages for solving these
 – GNU Linear Programming Kit, CPLEX, …

• LP relaxation of (M)IP: remove integrality constraints
 – Gives upper bound on MIP (~admissible heuristic)
Satisfiability as an integer program

\((x_1 \text{ OR } x_2 \text{ OR NOT}(x_4)) \text{ AND } (\text{NOT}(x_2) \text{ OR NOT}(x_3)) \text{ AND} \ldots\)

becomes

for all \(x_j, 0 \leq x_j \leq 1, x_j\) integer (shorthand: \(x_j\) in \(\{0,1\}\))

\(x_1 + x_2 + (1-x_4) \geq 1\)

\((1-x_2) + (1-x_3) \geq 1\)

\(\ldots\)

Solving integer programs is at least as hard as satisfiability, hence NP-hard (we have reduced SAT to IP)

Try modeling other NP-hard problems as (M)IP!
Solving the integer program with DFS branch and bound

Trick: For integer x and k, either $x \leq k$ or $x \geq k+1$

LP solution: $x=2.5$, $y=2.5$, obj = 12.5

LP solution: $x=3$, $y=1.5$, obj = 12

LP solution: infeasible

LP solution: infeasible

LP solution: $x=3.25$, $y=1$, obj = 11.75

LP solution: $x=3$, $y=1$, obj = 11

if LP solution is integral, we are done
Again with a more fortunate choice

\[
\text{maximize } 3x + 2y \\
\text{subject to} \\
4x + 2y \leq 15 \\
x + 2y \leq 8 \\
x + y \leq 5 \\
x \geq 3
\]

LP solution: \(x=3, \ y=1.5, \ obj = 12 \)

\[
\text{maximize } 3x + 2y \\
\text{subject to} \\
4x + 2y \leq 15 \\
x + 2y \leq 8 \\
x + y \leq 5 \\
x \leq 2
\]

LP solution: \(x=2, \ y=3, \ obj = 12 \)

done!