CPS 270: Artificial Intelligence
http://www.cs.duke.edu/courses/fall08/cps270/

Search

Instructor: Vincent Conitzer
Search

• We have some actions that can change the state of the world
 – Change induced by an action perfectly predictable

• Try to come up with a sequence of actions that will lead us to a goal state
 – May want to minimize number of actions
 – More generally, may want to minimize total cost of actions

• Do not need to execute actions in real life while searching for solution!
 – Everything perfectly predictable anyway
A simple example: traveling on a graph

start state

goal state
Searching for a solution

start state

F goal state
search tree nodes and states are not the same thing!
Full search tree

state = A, cost = 0

state = B, cost = 3

state = C, cost = 5

state = D, cost = 3

state = F, cost = 12

state = A, cost = 7

state = E, cost = 7

state = F, cost = 11

goal state!

state = B, cost = 10

state = D, cost = 10

goal state!
Changing the goal: want to visit all vertices on the graph

need a different definition of a state
“currently at A, also visited B, C already”
large number of states: $n \times 2^{n-1}$
could turn these into a graph, but…
What would happen if the goal were to visit every location twice?
Key concepts in search

- Set of states that we can be in
 - Including an initial state…
 - … and goal states (equivalently, a goal test)

- For every state, a set of actions that we can take
 - Each action results in a new state
 - Typically defined by successor function
 - Given a state, produces all states that can be reached from it

- Cost function that determines the cost of each action (or path = sequence of actions)

- Solution: path from initial state to a goal state
 - Optimal solution: solution with minimal cost
8-puzzle

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

goal state
8-puzzle
Generic search algorithm

- Fringe = set of nodes generated but not expanded

- fringe := \{initial state\}

- loop:
 - if fringe empty, declare failure
 - choose and remove a node v from fringe
 - check if v’s state s is a goal state; if so, declare success
 - if not, expand v, insert resulting nodes into fringe

- Key question in search: Which of the generated nodes do we expand next?
Uninformed search

• Given a state, we only know whether it is a goal state or not
• Cannot say one nongoal state looks better than another nongoal state
• Can only traverse state space blindly in hope of somehow hitting a goal state at some point
 – Also called blind search
 – Blind does not imply unsystematic!
Breadth-first search
Properties of breadth-first search

• Nodes are expanded in the same order in which they are generated
 – Fringe can be maintained as a First-In-First-Out (FIFO) queue

• BFS is complete: if a solution exists, one will be found

• BFS finds a shallowest solution
 – Not necessarily an optimal solution

• If every node has b successors (the branching factor), first solution is at depth d, then fringe size will be at least b^d at some point
 – This much space (and time) required 😞
Depth-first search
Implementing depth-first search

• Fringe can be maintained as a Last-In-First-Out (LIFO) queue (aka. a stack)

• Also easy to implement recursively:

• DFS(node)
 – If goal(node) return solution(node);
 – For each successor of node
 • Return DFS(successor) unless it is failure;
 – Return failure;
Properties of depth-first search

- Not complete (might cycle through nongoal states)
- If solution found, generally not optimal/shallowest
- If every node has b successors (the branching factor), and we search to at most depth m, fringe is at most bm
 - Much better space requirement 😊
 - Actually, generally don’t even need to store all of fringe
- Time: still need to look at every node
 - \(b^m + b^{m-1} + \ldots + 1 \) (for \(b > 1 \), \(O(b^m) \))
 - Inevitable for uninformed search methods…
Combining good properties of BFS and DFS

- **Limited depth DFS:** just like DFS, except never go deeper than some depth \(d \)
- **Iterative deepening DFS:**
 - Call limited depth DFS with depth 0;
 - If unsuccessful, call with depth 1;
 - If unsuccessful, call with depth 2;
 - Etc.

- Complete, finds shallowest solution
- Space requirements of DFS
- May seem wasteful timewise because replicating effort
 - Really not that wasteful because almost all effort at deepest level
 - \(db + (d-1)b^2 + (d-2)b^3 + \ldots + 1b^d \) is \(O(b^d) \) for \(b > 1 \)
Let’s start thinking about cost

- BFS finds shallowest solution because always works on shallowest nodes first
- Similar idea: always work on the lowest-cost node first (uniform-cost search)
- Will find optimal solution (assuming costs increase by at least constant amount along path)
- Will often pursue lots of short steps first
- If optimal cost is C, and cost increases by at least L each step, we can go to depth C/L
- Similar memory problems as BFS
 - Iterative lengthening DFS does DFS up to increasing costs
Searching backwards from the goal

• Sometimes can search backwards from the goal
 – Maze puzzles
 – Eights puzzle
 – Reaching location F
 – What about the goal of “having visited all locations”?

• Need to be able to compute predecessors instead of successors

• What’s the point?
Predecessor branching factor can be smaller than successor branching factor

• Stacking blocks:
 – only action is to add something to the stack

Start state: In hand: A, B, C
Goal state: In hand: nothing

We’ll see more of this...
Bidirectional search

• Even better: search from both the start and the goal, in parallel!

• If the shallowest solution has depth d and branching factor is b on both sides, requires only $O(b^{d/2})$ nodes to be explored!
Making bidirectional search work

• Need to be able to figure out whether the fringes intersect
 – Need to keep at least one fringe in memory…

• Other than that, can do various kinds of search on either tree, and get the corresponding optimality etc. guarantees

• Not possible (feasible) if backwards search not possible (feasible)
 – Hard to compute predecessors
 – High predecessor branching factor
 – Too many goal states
Repeated states

- Repeated states can cause incompleteness or enormous runtimes
- Can maintain list of previously visited states to avoid this
 - If new path to the same state has greater cost, don’t pursue it further
 - Leads to time/space tradeoff
- “Algorithms that forget their history are doomed to repeat it” [Russell and Norvig]
Informed search

• So far, have assumed that no nongoal state looks better than another

• Unrealistic
 – Even without knowing the road structure, some locations seem closer to the goal than others
 – Some states of the 8s puzzle seem closer to the goal than others

• Makes sense to expand closer-seeming nodes first
Heuristics

- Key notion: **heuristic function** $h(n)$ gives an estimate of the distance from n to the goal
 - $h(n)=0$ for goal nodes

- E.g. **straight-line distance** for traveling problem

![Diagram showing a network of nodes A, B, C, D, E, F with distances and heuristic values.](image)

- Say: $h(A) = 9$, $h(B) = 8$, $h(C) = 9$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$

- We’re adding something new to the problem!

- Can use heuristic to decide which nodes to expand first
Greedy best-first search

- **Greedy best-first search**: expand nodes with lowest h values first

- Rapidly finds the optimal solution!

- Does it always?
A bad example for greedy

Say: $h(A) = 9$, $h(B) = 5$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$

Problem: greedy evaluates the promise of a node only by how far is left to go, does not take cost occurred already into account.
A*

- Let $g(n)$ be cost incurred already on path to n
- Expand nodes with lowest $g(n) + h(n)$ first

Say: $h(A) = 9$, $h(B) = 5$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$

Note: if $h=0$ everywhere, then just uniform cost search
Admissibility

- A heuristic is **admissible** if it never overestimates the distance to the goal
 - If \(n \) is the optimal solution reachable from \(n' \), then \(g(n) \geq g(n') + h(n') \)
- Straight-line distance is admissible: can’t hope for anything better than a straight road to the goal
- Admissible heuristic means that A* is always optimistic
Optimality of A*

- If the heuristic is admissible, A* is optimal (in the sense that it will never return a suboptimal solution)

- Proof:
 - Suppose a suboptimal solution node n with solution value $C > C^*$ is about to be expanded (where C^* is optimal)
 - Let n^* be an optimal solution node (perhaps not yet discovered)
 - There must be some node n' that is currently in the fringe and on the path to n^*
 - We have $g(n) = C > C^* = g(n^*) \geq g(n') + h(n')$
 - But then, n' should be expanded first (contradiction)
A* is not complete (in contrived examples)

- No optimal search algorithm can succeed on this example (have to keep looking down the path in hope of suddenly finding a solution)
A* is optimally efficient

• A* is optimally efficient in the sense that any other optimal algorithm must expand at least the nodes A* expands

• Proof:
 – Besides solution, A* expands exactly the nodes with $g(n)+h(n) < C^*$
 • Assuming it does not expand non-solution nodes with $g(n)+h(n) = C^*$
 – Any other optimal algorithm must expand at least these nodes (since there may be a better solution there)

• Note: This argument assumes that the other algorithm uses the same heuristic h
A* and repeated states

• Suppose we try to avoid repeated states

• Ideally, the second (or third, …) time that we reach a state the cost is at least as high as the first time
 – Otherwise, have to update everything that came after

• This is guaranteed if the heuristic is consistent: if one step takes us from n to n’, then \(h(n) \leq h(n’) + \) cost of step from n to n’
 – Similar to triangle inequality
Proof

• Suppose \(n \) and \(n' \) correspond to same state, \(n' \) is cheaper to reach, but \(n \) is expanded first

• \(n' \) cannot have been in the fringe when \(n \) was expanded because \(g(n') < g(n) \), so

 \[g(n') + h(n') < g(n) + h(n) \]

• So \(n' \) is generated (eventually) from some other node \(n'' \) currently in the fringe, after \(n \) is expanded

 \[g(n) + h(n) \leq g(n'') + h(n'') \]

• Combining these, we get

 \[g(n') + h(n') < g(n'') + h(n'') \]

 \[h(n'') > h(n') + \text{cost of steps from } n'' \text{ to } n' \]

• Violates consistency
Iterative Deepening A*

- One big drawback of A* is the space requirement: similar problems as uniform cost search, BFS
- **Limited-cost depth-first A***: some cost cutoff \(c \), any node with \(g(n) + h(n) > c \) is not expanded, otherwise DFS
- **IDA*** gradually increases the cutoff of this
- Can require lots of iterations
 - Trading off space and time…
 - **RBFS** algorithm reduces wasted effort of IDA*, still linear space requirement
 - **SMA** proceeds as A* until memory is full, then starts doing other things
More about heuristics

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

• One heuristic: number of misplaced tiles
• Another heuristic: sum of **Manhattan distances** of tiles to their goal location
 – Manhattan distance = number of moves required if no other tiles are in the way
• Admissible? Which is better?
• Admissible heuristic h_1 **dominates** admissible heuristic h_2 if $h_1(n) \geq h_2(n)$ for all n
 – Will result in fewer node expansions
• “Best” heuristic of all: solve the remainder of the problem optimally with search
 – Need to worry about computation time of heuristics…
Designing heuristics

• One strategy for designing heuristics: relax the problem (make it easier)

• “Number of misplaced tiles” heuristic corresponds to relaxed problem where tiles can jump to any location, even if something else is already there

• “Sum of Manhattan distances” corresponds to relaxed problem where multiple tiles can occupy the same spot

• Another relaxed problem: only move 1,2,3,4 into correct locations

• The ideal relaxed problem is
 – easy to solve,
 – not much cheaper to solve than original problem

• Some programs can successfully automatically create heuristics
Macro-operators

• Perhaps a more human way of thinking about search in the eights puzzle:

```
1  2  3
8  4
7  6  5
```

sequence of operations =
macro-operation

```
8  2  1
7  3
6  5  4
```

• We swapped two adjacent tiles, and rotated everything

• Can get all tiles in the right order this way
 – Order might still be rotated in one of eight different ways; could solve these separately

• Optimality?

• Can AI think about the problem this way? Should it?