CompSci 6
Programming Design and Analysis

September 3, 2009
Prof. Rodger and Prof. Forbes

Announcements

• Reading for next time
 – Chap. 4.1-4.5, Chap 5, Chap 7.1-7.5
 – Reading Quiz due before next class

Top 10 list for surviving in CompSci 6

• 10. Read the Book
• 9. Keep Pizza number handy
• 8. Learn how to spell Rodger
• 7. Ask questions
• 6. Keep working until it is correct

Top 10 list (cont)

• 5. Get the easy points! (reading quizzes, READMEs, etc.)
• 4. Visit your professor, TA and/or UTA
• 3. Read the CompSci 6 Bulletin Board
• 2. Seek help when stuck (1 hour rule)!
• 1. Start programming assignments early!
Estimation

• Square Root:
 – Given a real number c and some error tolerance ϵ
 – Estimate t, the square root of c

• π:
 – Estimate π with a given number of Monte Carlo trials

While Loops: Square Root

• Q. How might we implement `Math.sqrt()`?
 • A. To compute the square root of c:
 – Initialize $t_0 = c$.
 – Repeat until $t_i = c / t_i$, up to desired precision:
 set t_{i+1} to be the average of t_i and c / t_i.

<table>
<thead>
<tr>
<th>t_i</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>c</td>
</tr>
<tr>
<td>t_1</td>
<td>$\frac{c}{t_0}$</td>
</tr>
<tr>
<td>t_2</td>
<td>$\frac{c}{t_0} + \frac{c}{t_1}$</td>
</tr>
<tr>
<td>t_3</td>
<td>$\frac{c}{t_1} + \frac{c}{t_2}$</td>
</tr>
<tr>
<td>t_4</td>
<td>$\frac{c}{t_2} + \frac{c}{t_3}$</td>
</tr>
<tr>
<td>t_5</td>
<td>$\frac{c}{t_3} + \frac{c}{t_4}$</td>
</tr>
</tbody>
</table>

computing the square root of 2

Newton-Raphson Method

• Square root method explained. $f(x) = x^2 - c$ to compute \sqrt{c}
 – Goal: find root of function $f(x)$.
 – Start with estimate $t_0 = c$.
 – Draw line tangent to curve at $x = t_i$.
 – Set t_{i+1} to be x-coordinate where line hits x-axis.
 – Repeat until desired precision.

Buffon Needle Experiment
Needle Position

- Needle length = 1, distance between lines = 2
- Generate random \(y_{low} \) between 0 and 2
- Generate random angle \(\alpha \) between 0 and 180 degrees
- \(y_{high} = y_{low} + \sin(\alpha) \)
- Hit if \(y_{high} \geq 2 \)

Constructing objects/Applying methods

- Class Rectangle in Chapter 2
- Creating a Rectangle object with \(x, y, \) width, and height

 \[
 \text{Rectangle box = new Rectangle}(5, 10, 20, 30);
 \]
- Applying Methods

 \[
 \text{box.translate}(15, 25); \quad \text{// move the rectangle}
 \]

 \[
 \text{System.out.println(“x: “, box.getX()); \quad \text{// print x}
 \]

 \[
 \text{System.out.println(“y: “, box.getY()); \quad \text{// print y}
 \]

Parts of a Class

- State
 - Data
- Constructors
 - Initialize state when object is created
- Accessor methods
 - Accessing data
- Mutator methods
 - Modify data – change the state

Class Example

- Needle class – Needle.java
 - Defines state and behavior of Needle
 - Keeps track of the number of times needle hits the line
 - Use drop() method to simulate dropping needle
- java.util.Random class in Java library
 - nextDouble() generates pseudo-random numbers in \([0,1]\)
```java
import java.util.Random;

public class Needle {
    public Needle() {
        hits = 0;
        tries = 0;
        generator = new Random();
    }

    public void drop() {
        double ylow = 2 * generator.nextDouble();
        double angle = 180 * generator.nextDouble();

        double yhigh = ylow + Math.sin(Math.toRadians(angle));
        if (yhigh >= 2) myHits++;
        tries++;
    }

    public int getHits() {
        return myHits;
    }

    public int getTries() {
        return myTries;
    }

    private Random myGenerator;
    private int myHits;
    private int myTries;
}
```

Classwork Today – Loops/Classes

- Snarf the `classwork/04_loops_cps006_fall09` project
- Complete Sqrt
 - Finish `estimate` method
 - Print results
- Complete Needle
 - Finish `main` method
 - Print results
- Classwork handout has all the details
- Submit under assignment name `classSep03`

Intended Output:

Tries = 10000, Tries / Hits = 3.08928
Tries = 1000000, Tries / Hits = 3.14204