CPS 102: Discrete Mathematics

Assignment 2

Due: Friday September 28, 2007

1 Inductive Reasoning (30 points)

Write a computer program to draw a two-dimensional space filling curve. Turn in your code and a sample of your output.

2 Methods of Proof (5 points)

Prove that the square of an even number is an even number using
(a) a direct proof.
(b) an indirect proof.
(c) a proof by contradiction.

3 Methods of Proof (5 points)

Prove that if n is an integer and $3 n+2$ is even, then n is even using
(a) an indirect proof.
(b) a proof by contradiction.

4 Methods of Proof (5 points)

Use a proof by cases to show that $\lfloor n / 2\rfloor\lfloor n / 2\rfloor=\left\lfloor n^{2} / 4\right\rfloor$ for all integers n.

5 Methods of Proof (5 points)

Prove or disprove that given a positive integer n, there are n consecutive odd positive integers that are primes.

6 Mathematical Induction (5 points)

Find a formula for

$$
\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n(n+1)}
$$

by examining the values of this expression for small values of n. Use mathematical induction to prove your result.

7 Mathematical Induction (5 points)

Prove that $1.1!+2.2!+\ldots+n . n!=(n+1)!-1$ whenever n is a positive integer.

8 Mathematical Induction (5 points)

Use mathematical induction to prove that

$$
1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=n(n+1)(n+2)(n+3) / 4
$$

9 Mathematical Induction (5 points)

Prove that

$$
1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}<2-\frac{1}{n}
$$

whenever n is a positive integer greater than 1 .

10 Mathematical Induction (10 points)

Use mathematical induction to prove that a set with n elements has $n(n-1)(n-2) / 6$ subsets containing exactly three elements whenever n is an integer greater than or equal to 3 .

11 Mathematical Induction (10 points)

Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ are sets such that $A_{k} \subseteq B_{k}$ for $k=1,2, \ldots, n$, then
(a) $\bigcup_{k=1}^{n} A_{k} \subseteq \bigcup_{k=1}^{n} B_{k}$
(b) $\bigcap_{k=1}^{n} A_{k} \subseteq \bigcap_{k=1}^{n} B_{k}$

12 Mathematical Induction (5 points)

Use the formula for the sum of the terms of a geometric progression to evaluate the following sums.
(a) $4+4.3+4.3^{2}+\ldots+4.3^{8}$
(b) $3+3.2^{2}+3.2^{4}+\ldots+3.2^{10}$
(c) $1-2+2^{2}-2^{3}+\ldots+(-1)^{n} 2^{n}$

13 Mathematical Induction (10 points)

Find the flaw with the following "proof" that $a^{n}=1$ for all nonnegative integers n, whenever a is a nonzero real number.
BASIC STEP: $a^{0}=1$ is true by the definition of a^{0}.
INDUCTIVE STEP: Assume that $a^{k}=1$ for all nonnegative integers k with $k \leq n$. Then note that

$$
a^{n+1}=\frac{a^{n} \cdot a^{n}}{a^{n-1}}=\frac{1.1}{1}=1
$$

14 Mathematical Induction (10 points)

Show that the following form of mathematical induction is a valid method to prove that $P(n)$ is true for all positive integers n.
BASIC STEP: $P(1)$ and $P(2)$ are true.
INDUCTIVE STEP: For each positive integer n, if $P(n)$ and $P(n+1)$ are both true, then $P(n+2)$ is true.

15 Recursive Definitions (5 points)

Find $f(1), f(2), f(3), f(4)$ and $f(5)$ if $f(n)$ is defined recursively by $f(0)=3$ and for $n=0,1,2, \ldots$
(a) $f(n+1)=-2 f(n)$
(b) $f(n+1)=3 f(n)+7$
(c) $f(n+1)=f(n)^{2}-2 f(n)-2$
(d) $f(n+1)=3^{f(n) / 3}$

16 Recursive Definitions (5 points)

Give a recursive definition of the sequence $\left\{a_{n}\right\}, n=1,2,3 \ldots$ if
(a) $a_{n}=4 n-2$
(b) $a_{n}=1+(-1)^{n}$
(c) $a_{n}=n(n+1)$
(d) $a_{n}=n^{2}$

17 Recursive Definitions (5 points)

Show that each of the following proposed recursive definitions of a function on the set of positive integers does not produce a well-defined function
(a) $F(n)=1+F(\lfloor n / 2\rfloor)$ for $n \geq 1$ and $F(1)=1$
(b) $F(n)=1+F(n-3)$ for $n \geq 2, F(1)=2$ and $F(2)=3$
(c) $F(n)=1+F(n / 2)$ for $n \geq 2, F(1)=1$ and $F(2)=2$
(d) $F(n)=1+F(n / 2)$ if n is even and $n \geq 2, F(n)=1-F(n-1)$ if n is odd, and $F(1)=1$
(e) $F(n)=1+F(n / 2)$ if n is even and $n \geq 2, F(n)=F(3 n-1)$ if n is odd and $n \geq 3, F(1)=1$

