CPS 296.1
Auctions & Combinatorial Auctions

Vincent Conitzer
conitzer@cs.duke.edu
A few different 1-item auction mechanisms

- **English auction:**
 - Each bid must be higher than previous bid
 - Last bidder wins, pays last bid

- **Japanese auction:**
 - Price rises, bidders drop out when price is too high
 - Last bidder wins at price of last dropout

- **Dutch auction:**
 - Price drops until someone takes the item at that price

- **Sealed-bid auctions (direct revelation mechanisms):**
 - Each bidder submits a bid in an envelope
 - Auctioneer opens the envelopes, highest bid wins
 - **First-price** sealed-bid auction: winner pays own bid
 - **Second-price** sealed bid (or Vickrey) auction: winner pays second-highest bid
Complementarity and substitutability

• How valuable one item is to a bidder may depend on whether the bidder possesses another item

• Items a and b are complementary if \(v(\{a, b\}) > v(\{a\}) + v(\{b\}) \)
 • E.g.

• Items a and b are substitutes if \(v(\{a, b\}) < v(\{a\}) + v(\{b\}) \)
 • E.g.
Inefficiency of **sequential** auctions

- Suppose your valuation function is $v(\square) = \$200$, $v(\Box) = \$100$, $v(\square\Box) = \$500$
- Now suppose that there are two (say, Vickrey) auctions, the first one for \Box and the second one for \square
- What should you bid in the first auction (for \Box)?
- If you bid $\$200$, you may lose to a bidder who bids $\$250$, only to find out that you could have won $\square\Box$ for $\$200$
- If you bid anything higher, you may pay more than $\$200$, only to find out that $\square\Box$ sells for $\$1000$
- Sequential (and **parallel**) auctions are **inefficient**
Combinatorial auctions

Simultaneously for sale: , , ,

\[v(\text{[tower]} \text{[monitor]}) = $500 \]

\[v(\text{[laptop]} \text{[monitor]}) = $700 \]

\[v(\text{[laptop]}) = $300 \]

used in truckload transportation, industrial procurement, radio spectrum allocation, …
The **winner determination problem** (WDP)

- Choose a subset A (the accepted bids) of the bids B,
- to maximize \(\sum_{b \in A} v_b \),
- under the constraint that every item occurs at most once in A
 - This is assuming **free disposal**, i.e., not everything needs to be allocated
WDP example

- Items A, B, C, D, E
- Bids:
 - (\{A, C, D\}, 7)
 - (\{B, E\}, 7)
 - (\{C\}, 3)
 - (\{A, B, C, E\}, 9)
 - (\{D\}, 4)
 - (\{A, B, C\}, 5)
 - (\{B, D\}, 5)

- What’s an optimal solution?
- How can we prove it is optimal?
Price-based argument for optimality

- Items A, B, C, D, E
- Bids:
 - ({A, C, D}, 7)
 - ({B, E}, 7)
 - ({C}, 3)
 - ({A, B, C, E}, 9)
 - ({D}, 4)
 - ({A, B, C}, 5)
 - ({B, D}, 5)

- Suppose we create the following “prices” for the items:
 - \(p(A) = 0, \ p(B) = 7, \ p(C) = 3, \ p(D) = 4, \ p(E) = 0 \)

- Every bid bids at most the sum of the prices of its items, so we can’t expect to get more than 14.
Price-based argument does not always give matching upper bound

- Items A, B, C
- Bids:
 - ({A, B}, 2)
 - ({B, C}, 2)
 - ({A, C}, 2)

- Clearly can get at most 2
- If we want to set prices that sum to 2, there must exist two items whose prices sum to < 2
- But then there is a bid on those two items of value 2
 - (Can set prices that sum to 3, so that’s an upper bound)

Should not be surprising, since it’s an NP-hard problem and we don’t expect short proofs for negative answers to NP-hard problems (we don’t expect NP = coNP)
An integer program formulation

- x_b equals 1 if bid b is accepted, 0 if it is not
 - maximize $\sum_b v_b x_b$
 - subject to
 - for each item j, $\sum_{b: j \in b} x_b \leq 1$
- If each x_b can take any value in $[0, 1]$, we say that bids can be **partially accepted**
- In this case, this is a linear program that can be solved in polynomial time
- This requires that
 - each item can be divided into fractions
 - if a bidder gets a fraction f of each of the items in his bundle, then this is worth the same fraction f of his value v_b for the bundle
Price-based argument **does** always work for partially acceptable bids

- Items A, B, C
- Bids:
 - ({A, B}, 2)
 - ({B, C}, 2)
 - ({A, C}, 2)

- Now can get 3, by accepting half of each bid
- Put a price of 1 on each item

General proof that with partially acceptable bids, prices always exist to give a matching upper bound is based on linear programming duality
Weighted independent set

- Choose subset of the vertices with maximum total weight,
- Constraint: no two vertices can have an edge between them
- NP-hard (generalizes regular independent set)
The winner determination problem as a weighted independent set problem

- Each bid is a vertex
- Draw an edge between two vertices if they share an item

Optimal allocation = maximum weight independent set
- Can model any weighted independent set instance as a CA winner determination problem (1 item per edge (or clique))
- Weighted independent set is NP-hard, even to solve approximately [Håstad 96] - hence, so is WDP
 - [Sandholm 02] noted that this inapproximability applies to the WDP
Dynamic programming approach to WDP [Rothkopf et al. 98]

• For every subset S of I, compute $w(S) = \text{the maximum total value that can be obtained when allocating only items in } S$

• Then, $w(S) = \max \{\max_i v_i(S), \max_{S': S' \text{ is a subset of } S} w(S') + w(S \setminus S')\}$

• Requires exponential time
Bids on connected sets of items in a tree

• Suppose items are organized in a tree

```
  item A
    ↓
  item B
```
 ↓
```
  item C
    ↓
  item D
```
```
  item E
```
 ↓
```
  item F
```
 ↓
```
  item G
  ↓
  item H
```

• Suppose each bid is on a connected set of items
 – E.g. \{A, B, C, G\}, but not \{A, B, G\}

• Then the WDP can be solved in polynomial time (using dynamic programming) [Sandholm & Suri 03]

• Tree does not need to be given: can be constructed from the bids in polynomial time if it exists [Conitzer, Derryberry, Sandholm 04]

• More generally, WDP can also be solved in polynomial time for graphs of bounded treewidth [Conitzer, Derryberry, Sandholm 04]
 – Even further generalization given by [Gottlob, Greco 07]
Maximum weighted matching
(not necessarily on bipartite graphs)

- Choose subset of the edges with maximum total weight,
- Constraint: no two edges can share a vertex
- Still solvable in polynomial time
Bids with few items [Rothkopf et al. 98]

• If each bid is on a bundle of at most two items, then the winner determination problem can be solved in polynomial time as a maximum weighted matching problem.
 – 3-item example:

• If each bid is on a bundle of three items, then the winner determination problem is NP-hard again.
Variants [Sandholm et al. 2002]:
combinatorial reverse auction

- In a combinatorial reverse auction (CRA), the auctioneer seeks to buy a set of items, and bidders have values for the different bundles that they may sell the auctioneer
 - minimize $\sum_b v_b x_b$
 - subject to
 - for each item j, $\sum_{b: j \in b} x_b \geq 1$
WDP example (as CRA)

- Items A, B, C, D, E
- Bids:
 - ({A, C, D}, 7)
 - ({B, E}, 7)
 - ({C}, 3)
 - ({D}, 4)
 - ({A, B, C, E}, 9)
 - ({A, B, C}, 5)
 - ({B, D}, 5)
Variants: multi-unit CAs/CRAs

- **Multi-unit** variants of CAs and CRAs: multiple units of the same item are for sale/to be bought, bidders can bid for multiple units
- Let q_{bj} be number of units of item j in bid b, q_j total number of units of j available/demanded

 - maximize $\sum_b v_b x_b$
 - subject to
 - for each item j, $\sum_b q_{bj} x_b \leq q_j$
 - minimize $\sum_b v_b x_b$
 - subject to
 - for each item j, $\sum_b q_{bj} x_b \geq q_j$
Multi-unit WDP example (as CA/CRA)

- Items: 3A, 2B, 4C, 1D, 3E
- Bids:
 - ({1A, 1C, 1D}, 7)
 - ({2B, 1E}, 7)
 - ({2C}, 3)
 - ({2A, 1B, 2C, 2E}, 9)
 - ({2D}, 4)
 - ({3A, 1B, 2C}, 5)
 - ({2B, 2D}, 5)
Variants: (multi-unit) combinatorial exchanges

- Combinatorial exchange (CE): bidders can simultaneously be buyers and sellers
 - Example bid: “If I receive 3 units of A and -5 units of B (i.e., I have to give up 5 units of B), that is worth $100 to me.”

- maximize $\Sigma_b v_b x_b$
- subject to
 - for each item j, $\Sigma_b q_{b,j} x_b \leq 0$
CE WDP example

- Bids:
 - ({-1A, -1C, -1D}, -7)
 - ({2B, 1E}, 7)
 - ({2C}, 3)
 - ({-2A, 1B, 2C, -2E}, 9)
 - ({-2D}, -4)
 - ({3A, -1B, -2C}, 5)
 - ({-2B, 2D}, 0)
Variants: no free disposal

- Change all inequalities to equalities
Expressing valuation functions using bundle bids

- A bidder is **single-minded** if she only wants to win one particular bundle
 - Usually not the case
- But: one bidder may submit multiple bundle bids
- Consider again valuation function $v(\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }) = \200, $v(\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }) = \100, $v(\text{ }\text{ }) = \$500$
- What bundle bids should one place?
- What about: $v(\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }) = \300, $v(\text{ }\text{ }) = \$200$, $v(\text{ }\text{ }) = \$400$?
Alternative approach: report entire valuation function

• I.e., every bidder \(i \) reports \(v_i(S) \) for every subset \(S \) of \(I \) (the items)

• Winner determination problem:
 • Allocate a subset \(S_i \) of \(I \) to each bidder \(i \) to maximize \(\sum v_i(S_i) \) (under the constraint that for \(i \neq j, S_i \cap S_j = \emptyset \))
 – This is assuming free disposal, i.e., not everything needs to be allocated
Exponentially many bundles

• In general, in a combinatorial auction with set of items I ($|I| = m$) for sale, a bidder could have a different valuation for every subset S of I
 – Implicit assumption: no externalities (bidder does not care what the other bidders win)

• Must a bidder communicate 2^m values?
 – Impractical
 – Also difficult for the bidder to evaluate every bundle

• Could require $v_i(\emptyset) = 0$
 – Does not help much

• Could require: if S is a superset of S', $v(S) \geq v(S')$ (free disposal)
 – Does not help in terms of number of values
Bidding languages

- **Bidding language** = a language for expressing valuation functions
- A good bidding language allows bidders to **concisely** express **natural** valuation functions
- Example: the **OR** bidding language [Rothkopf et al. 98, DeMartini et al. 99]
- Bundle-value pairs are ORed together, auctioneer may accept any number of these pairs (assuming no overlap in items)
- E.g. (\{a\}, 3) OR (\{b, c\}, 4) OR (\{c, d\}, 4) implies
 - A value of 3 for \{a\}
 - A value of 4 for \{b, c, d\}
 - A value of 7 for \{a, b, c\}
- Can we express the valuation function \(v(\{a, b\}) = v(\{a\}) = v(\{b\}) = 1\) using the OR bidding language?
- OR language is good for expressing complementarity, bad for expressing substitutability
XORs

- If we use XOR instead of OR, that means that only one of the bundle-value pairs can be accepted.
- Can express any valuation function (simply XOR together all bundles).
- E.g. \{(a), 3\} XOR \{(b, c), 4\} XOR \{(c, d), 4\} implies
 - A value of 3 for \{a\}
 - A value of 4 for \{b, c, d\}
 - A value of 4 for \{a, b, c\}
- Sometimes not very concise.
- E.g. suppose that for any \(S\), \(v(S) = \Sigma_{s \in S} v(\{s\})\)
 - How can this be expressed in the OR language?
 - What about the XOR language?
- Can also combine ORs and XORs to get benefits of both [Nisan 00, Sandholm 02]
- E.g. \(((\{a\}, 3) \text{ XOR } \{(b, c), 4\}) \text{ OR } \{(c, d), 4\})\) implies
 - A value of 4 for \{a, b, c\}
 - A value of 4 for \{b, c, d\}
 - A value of 7 for \{a, c, d\}
WDP and bidding languages

• **Single-minded bidders** bid on only one bundle
 – Valuation is v for any subset including that bundle, 0 otherwise

• If we can solve the WDP for single-minded bidders, we can also solve it for the OR language
 – Simply pretend that each bundle-value pair comes from a different bidder

• We can even use the same algorithm when XORs are added, using the following trick:
 – For bundle-value pairs that are XORed together, add a dummy item to them [Fujishima et al 99, Nisan 00]
 – E.g. $\{a\}, 3$ XOR $\{b, c\}, 4$ becomes $\{a, \text{dummy}_1\}, 3$ OR $\{b, c, \text{dummy}_1\}, 4$

• So, we can focus on single-minded bids