Grad School Survival Skills
CPS 300: Introduction to Graduate Study
Jun Yang
September 2, 2009

Announcements
- Mailing lists
 - Ping pong, Go, movies, etc.: recreation@cs.duke.edu
- Exchanging ideas on research and computing, forming project teams, etc.: askgrad@cs.duke.edu
- Currently traffic is low, but we could resurrect it
- Ask Diane to get onto these lists
- "Resources" pages on the website have been updated
- Thanks for your suggestions on what to cover in CPS 300!
 - Student panel for sharing info/experience
 - Overview of research projects and open positions
 - Academic/industry career planning

Annual progress report
(cf. Addendum document)
Provide by the end of every fall:
- CV
- Research summary (1-2 pages): big picture + progress + future directions
- Progress statement (1 page): self assessment of progress + goals for the coming year + plan for meeting milestones
- BibTeX bibliography of your pubs and works-in-progress
- Feedback from faculty around mid-February:
 - Written feedback from your mentor/advisor
 - Discussion at a faculty meeting
- Request for additional progress steps, or in the worst case, withdrawal (let’s hope this won’t happen!)

On picking pros/topics
- Most important: work on something that you love
 - Or else grad life will be miserable
 - But then, tastes are sometimes acquired...
- Flexibility vs. concrete projects
- Large vs. small groups
- Hands-off vs. hand-on
- Practical impact vs. intellectual challenge
- Junior vs. senior
- Funding prospects
- Having non-CS advisor is fine, but requires more effort
 - Good idea to find a champion in CS

On approaching pros
- Start early; they want to see you "in action" before committing
- Show you have background/skills, or can acquire them quickly
 - Past projects, current course project
 - Communicating, writing, coding...
- Show you have the right attitude/habits
 - Initiative, punctuality, genuineness, independence, meticulousness, tenacity, flexibility, ...
- Short, productive meetings > long, one-way monolog

 - What if you got completely lost in the meeting?
 - What if you were just given a paper to read?
 - What if nothing concrete came out of the meeting?

When to meet with advisors

WHEN TO MEET WITH YOUR ADVISOR
Is there ever a good time?

<table>
<thead>
<tr>
<th>Beginning of the week</th>
<th>End of the week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro: Get it out with quick</td>
<td></td>
</tr>
<tr>
<td>Cons: You have a guaranteed date with work on Sundays</td>
<td></td>
</tr>
<tr>
<td>Mid-week</td>
<td></td>
</tr>
<tr>
<td>Pro: Good balance</td>
<td></td>
</tr>
<tr>
<td>Cons: Give you time to work on feedback</td>
<td></td>
</tr>
<tr>
<td>Saturday/Sunday</td>
<td></td>
</tr>
<tr>
<td>Pro: There is no "yes"</td>
<td></td>
</tr>
<tr>
<td>Cons: Your advisor is a wonderful mentor. Good luck with that.</td>
<td></td>
</tr>
</tbody>
</table>

9/2/2009
Keep the pressure on!

- Too often, advisors make advisees pressured, guilty, and scared.
- But it should be the other way around!
 - Good advisees should make advisors feel (happily) pressured, guilty, and even scared.

Take initiative!

- Propose weekly goals, meeting agendas, new problems.
 - Note "propose" ≠ "set"; you will need your advisor's guidance.
- Learn new, related work yourself and fill your advisor in.

Run initiative!

- Propose weekly goals, meeting agendas, new problems.

Communication is important

- Want your advisor to be your best advocate?
- Always keep him/her in the loop!

On finding related work

- Ask your advisor, who can offer good starting points and see not-so-obvious connections.
- Follow citations (forward & backward).
- Google (Scholar) + online databases (e.g., ACM DL, DBLP)
- Need to build up a list of useful keywords.
- Rank using citations/venue prestige.
- Routinely check top venues.
- Share with fellow students (reading groups, journal clubs).
- Talk to people at seminars, conferences, ...
- Talk to those outside your field.
 - Start with your fellow grad students!
Anxiety vs. reading

Deciphering academese

How to read a paper

Above all, question authority
- Identify the problem being solved
- Attack the problem yourself, without looking at solutions
 - At least come up with their "strawman" solution
 - Might even get a better solution!
- Read their solution and compare it with yours
 - Are you convinced which one is better?
- Write a short, poignant summary; record in your bib db
 - Don't just copy their abstract
 - Keep additional notes in your bib db when you revisit the paper or discuss it with others

On reading motivation

- Is the problem new?
- Is the problem important?
- Is the problem interesting?
- Is the problem contrived?
- Learn how people make good/bad pitches
 - Some papers overstate/understate their applicability
 - Can you do better?
 - Come back after finishing reading: did they solve the same problem motivated earlier?

On reading evaluation

- Do the experiments tell you anything new?
 - Many simply confirm the obvious!
 - How do you make it more interesting?
- Is the paper trying to hide something?
 - Unexplained "magic sauce"
 - E.g., how to tune a parameter that affects performance
 - Choices of workloads and parameter ranges
 - E.g., synthetic datasets, unreal uses of real datasets, or x-axis covering a small range
 - Choices of performance metrics
 - E.g., an index costs 1/10 of the I/Os incurred by a full scan—great?

Other reading tips

- Read related work carefully
 - A glimpse at the bigger picture and pointers to follow to learn more about the problem/area
- Think beyond their related work discussion
 - Congrats if you uncover non-obvious connections to other areas!
- After you finish reading
 - What is the "take-away" message?
 - Think about future work
 - What assumptions can be relaxed or introduced?
 - Learn to appreciate their contributions
 - Don't judge what a paper is about by its abstract
 - Corollary: if you cite it, better read beyond the first page!
More announcements

- Next Wednesday: Joe Shamblin on computing in a computer science department
- Homework (due two weeks from now by email)
 - Talk to at least one faculty member or senior student
 - Get recommendation of a recent and/or important paper in an area/project that interests you
 - Get a sense of the important publication venues in this field
 - Read the paper suggested to you
 - Find a few (between 2 and 5) related papers; skim them
 - Prepare a BibTeX file of all above papers
 - Prepare a short document (≤ 2 pages)
 - Summarize (in your own words) the paper you read
 - Write a few sentences about each related paper