cutting the electric bill for internet-scale systems

Asfandyar Qureshi (MIT)
Rick Weber (Akamai)
Hari Balakrishnan (MIT)
John Guttag (MIT)
Bruce Maggs (Duke/CMU/Akamai)

context: massive systems

Google:
- estimated map
- tens of locations in the US
- >0.5M servers

others
- thousands of servers / multiple locations
- Amazon, Yahoo!, Microsoft, Akamai
- Bank of America (=50 locations), Reuters

electricity expenses

millions spent annually on electricity
- Google ~ 500k custom servers ~ $40 million/year
- Akamai ~ 40k off-the-rack servers ~ $10 million/year

electricity costs are growing
- systems are rapidly increasing in size
- outpacing energy efficiency gains

relative cost of electricity is rising
- 3-year server total cost of ownership by 2012:
 - electricity ≈ 2 × hardware
 - bandwidth prices are falling

what is being done

reduce number of kWh
- energy efficient hardware
- virtualization and consolidation
- power off servers when possible
- cooling (air economizers instead of chillers, etc.)
- dc power distribution, etc.

reduce cost per kWh
- build data-centers where average price is low

our proposal

exploit electricity market dynamics
- geographically uncorrelated price volatility
- monitor real-time market prices and adapt request routing

skew load across clusters based on prices
- leverage service replication and spare capacity

adapting to real-time prices is a new idea...
- complementary to energy efficiency work

exploiting price volatility

3 of the largest data center markets
$350/MWh
exploiting price volatility

system model (status quo)

request routing framework

will our proposal work?

will our proposal work?

will our proposal work?

does electricity usage depend on server load?

latency concerns

• how much can we reduce a location’s electricity consumption by routing clients away from it?

• how far away from a client is the cheap energy?
Traffic Statistics
- 30,000+ domains
- 1.1 Tbps daily peak traffic
- 6,419 terabytes / day
- 274 billion hits / day
- 274 million unique client IP addresses / day
- In 2009 expect to deliver more bits than in 1998-2008 combined

Network Deployment

Deployment in U.S.
Assigning Clients to Servers

“High level”: Map client to a cluster based on client’s nameserver’s IP address. Algorithm: stable marriage with multi-dimensional hierarchical capacity constraints.

“Low level”: Assign client to specific server or servers within cluster based on content requested. Algorithm: consistent hashing.

Embedded Image Delivery (e.g., Amazon)

Embedded URLs are Converted to ARLs

```html
<html>
<head>
<title>Welcome to xyz.com!</title>
</head>
<body>
<a href="page2.html">Click here to enter</a>
</body>
</html>
```

Akamai DNS Resolution

Maps IP address of client’s nameserver and type of content being requested to an Akamai cluster. Note: Doesn’t depend on content provider (although indicated by ak.xyz.com).

Special cases: Akamai Accelerated Network Partners (AANPs)
General case: “Core Point” analysis

generality of results

Akamai-specific inputs
- client workload
- geographic server distribution (25 cities / non-uniform)
- capacity & bandwidth constraints

results should apply to other systems
- realistic client workload
 - 2000 content providers
 - hundreds of billions of requests per day
- realistic server distribution
 - better than speculating…

request routing evaluation

latency goals capacity constraints network topology bandwidth price model

best-price performance aware routing

map: requests to locations

electricity prices (hourly)
request routing scheme
performance-aware price optimizer
- map client -> set of locations that meets latency goals
- rank locations based on electricity prices
- remove locations nearing capacity from set
- pick top-ranked location

assumptions
- complete replication
- hourly route updates preserve stability
- uniform bandwidth prices (we will relax this later…)

Akamai workload
measured traffic on Akamai's CDN
- large subset of Akamai's servers (~20K) in 25 cities
- collected over 24 days (Dec 2008 – Jan 2009)
- 5-min samples
 - number of hits and bytes transferred
 - track how Akamai routed clients to clusters
 - group clients by origin state
- also derived a synthetic workload

electricity prices
extensive survey of US electricity markets
- regional wholesale markets (both futures and spot)
- nature and causes of price volatility (see paper…)

data collection
- 39 months worth of historical hourly prices
 - January 2006 through March 2009
- 6 different regional wholesale markets
- 30 locations

request routing evaluation

location energy model
linear model (roughly)
- server utilization -> watts
- scaling: number of servers
- based on a Google study
- power measurements at Akamai

important parameters
(a) idle server power, peak server power
(b) PUE = power entire data center
 power used by IT equip.

critical: how proportional is power to load?
- server power management? are idle servers turned off?
- the ‘energy elasticity’ of the system

importance of elasticity
for each energy model:
simulate price-aware routing
simulate Akamai routing
calculate 24-day savings

energy model parameters
increasing energy proportionality
bandwidth costs

are we increasing bandwidth costs?
- problematic: bandwidth prices are proprietary

uniform bandwidth price model
- fixed cost per bit regardless of time and place

95/5 bandwidth pricing model
- prices set per network port
- network traffic is divided into 5-minute windows
- 95th percentile of traffic is used for billing

approach: 95th percentiles from Akamai data
- constrain routing so that 95th percentiles are unchanged
- Akamai’s routing factors in bandwidth prices...

bandwidth constraints

latency constraints

limitations

Akamai doesn’t use geographic distance as a primary metric in assigning clients to servers
Akamai’s power consumption is typically not metered

practical implications

who can use this approach?
- servers in multiple locations
- some energy proportionality

complications
- electric billing based on peak power
- we need prices w/ time-varying uncorrelated volatility
 - e.g., wholesale market prices in the US

current energy sector trends are favorable

conclusion

significant value in price volatility
- large systems today: save more $1M/year
- increased energy elasticity: more than $10M/year

required mechanism already mostly in place
- minimal incremental changes required
- integrate real-time market information

extensions
- other cost functions (carbon, NOx)
- other inputs (weather)
- active market participation (demand response, etc.)
market diversity

Number of Regional Markets vs. Dynamic Min. Price

- Min. Price
- Qureshi
- SIGCOMM
- August 2009
- Barcelona
- Spain