Experimenting with Grammars to Generate L-Systems

November 29, 2010

Prof. Susan Rodger
Computer Science Dept
L-Systems

• Model biological systems and create fractals
• Similar to Chomsky grammars, except all variables are replaced in each step, not just one!
• Successive strings are interpreted as strings of render commands and displayed graphically
English Grammar

- `<sentence>` \(\rightarrow\) `<subject>` `<verb>` `<direct obj>`
- `<subject>` \(\rightarrow\) `<noun>` | `<article>` `<noun>`
- `<verb>` \(\rightarrow\) hit | ran | ate
- `<direct obj>` \(\rightarrow\) `<article>` `<noun>` | `<noun>`
- `<noun>` \(\rightarrow\) Fritz | ball
- `<article>` \(\rightarrow\) the | an | a

- Variables (shown in `< >`) are replaced by right side of arrow
Example: Derive a sentence

• <sentence> → <subject> <verb> <direct obj>
 → <noun> <verb> <direct obj>
 → Fritz <verb> <direct obj>
 → Fritz hit <direct obj>
 → Fritz hit the <noun>
 → Fritz hit the ball
Parts of an L-System (a type of grammar)

- Defined over an alphabet
- Three parts
 - Axiom (starting place)
 - Replacement rules (replaces all variables at once)
 - Geometric rules (for drawing)
 - \(g \) means move forward one unit with pen down
 - \(f \) means move forward one unit with pen up
 - \(+ \) means turn right by the default angle
 - \(- \) means turn left by the default angle
Example – lsys-samp1

- Axiom
- Replacement Rules
- Geometric Rules

NOTE: Must use spaces as separator between symbols
Example – lsys-samp1 (cont)

• Derivation of strings

\[X \]

\[gggX+Y \]

\[gggggX + Y + g \]

\[gggggggX+Y+g+g \]

\[gggggggggX+Y+g+g+g \]

Note: replace both X and Y each time
More Geometric rules

- % change direction 180 degrees
- ~ decrement the width of the next lines
- [save in stack current state info
-] recover from stack state info
- { start filled in polygon
- } end filled in polygon
Example – lsys-samp2
Example – lsys-samp2 (cont)

\[g[^{\sim+}Yg]gX \]

\[g[^{\sim++}Yg]gg[^{\sim+}Yg]gX \]

\[g[^{\sim+++}Yg]gg[^{\sim++}Yg]gg[^{\sim+}Yg]gX \]

\[\ldots \]
Example - tree

\begin{itemize}
 \item \textbf{Axiom:} \(R \sim \#\# B \)
 \begin{align*}
 B \quad &\rightarrow \quad [\sim \#\# T L - B + + B] \\
 L \quad &\rightarrow \quad [\{ - g + + g \% - - g \}] \\
 R \quad &\rightarrow \quad !@@ R \\
 T \quad &\rightarrow \quad T g
 \end{align*}
\end{itemize}

\begin{table}[h]
\begin{tabular}{|c|c|}
 \hline
 \textbf{Name} & \textbf{Parameter} \\
 \hline
 color & brown \\
 polygonColor & forestGreen \\
 \hline
\end{tabular}
\end{table}
Example – tree rendered
Stochastic Tree

- Add a rule $T \rightarrow T$
- Now there is a choice for T, draw a line or don’t
Same Stochastic L-System

• Rendered 3 times, each at 8th derivation
JFLAP

- JFLAP is available for free:

 www.jflap.org

- JFLAP was developed by many Duke undergraduates over many years, has many other parts to it for studying theoretical computer science concepts

- JFLAP is downloaded in over 160 countries.

- Duke School of Environment uses L-systems to model pine needles in Duke Forest
Exercise 1

- Write an L-system for the picture below.
- Symbols needed are: g, + and one variable
- Distance of the line is 100, rendering at 1 draws the first line, each additional render draws another line.
Exercise 2

- Write an L-system for the picture below.
- Symbols may need: g and +
- Distance is set to 10, angle to 90, first rendering draws smallest square, additional render draws next larger square
Exercise 3

- Write an L-system for the picture below.
- Symbols may need: g, %, +
- Distance set to 15, angle set to 45, side of square is length 30, first diagonal line is 60
- 1st, 2nd and 6th renderings shown
Exercise 4

• Write an L-system for the picture below (this is a sample tree to focus on branching, don’t look at the tree from before).

• Symbols may need: g, +, -, []

• angle set to 30, distance set to 20

• 3rd rendering shown
Exercise 5

- Write an L-system for the picture below.
- Symbols may need: g, +, -, []
- Angle set to 90, distance set to 15
- Shows 1st, 2nd and 3rd renderings