CPS216: Data-Intensive Computing Systems

Query Processing (contd.)

Shivnath Babu
Overview of Query Processing

- SQL query
 - parse
 - parse tree
- Query rewriting
- Logical query plan
- Physical plan generation
 - Physical query plan
- Execute
 - Result

Query Optimization

Query Execution
Query Rewriting

1. **SQL query**
2. **parse**
3. **parse tree**
4. **Query rewriting**
5. **statistics**
6. **logical query plan**

Physical plan generation

1. **physical query plan**
2. **execute**
3. **result**

Logical plan

1. **Initial logical plan**
2. **Rewrite rules**
3. **“Best” logical plan**
Query Rewriting

We will revisit it towards the end of this lecture
Query rewriting

- SQL query
 - parse
 - parse tree
 - Query rewriting
 - statistics
 - Best logical query plan
 - Physical plan generation
 - Best physical query plan
 - execute
 - result
Physical Plan Generation

Best logical plan

\[\sigma_{R.A = "c"} \]

\[\pi_{B,D} \]

Natural join

\[R \]

\[S \]

Project

Hash join

Index scan

Table scan

\[R \]

\[S \]
Query rewriting

- SQL query
 - parse
 - parse tree

Query rewriting

- statistics
- Best logical query plan

Physical plan generation

- Best physical query plan

Physical plan generation

- Enumerate possible physical plans
 - Find the cost of each plan
 - Pick plan with minimum cost

execute

result
Physical Plan Generation

Logical Query Plan

P1

P2

....

Pn

C1

C2

....

Cn

Physical plans

Costs

Pick minimum cost one
Plans for Query Execution

• Roadmap
 – Path of a SQL query
 – Operator trees
 – Physical Vs Logical plans
 – Plumbing: Materialization Vs pipelining
Logical Plans Vs. Physical Plans

Best logical plan

Best physical plan
Operator Plumbing

- **Materialization:** output of one operator written to disk, next operator reads from the disk
- **Pipelining:** output of one operator directly fed to next operator
Materialization

Materialized here

\(R \)

\(\sigma_{R.A = "c"} \)

\(\pi_{B,D} \)

\(S \)
Iterators: Pipelining

$\sigma_{R.A = "c"} \quad S \quad R$

$\pi_{B,D}$

- Each operator supports:
 - Open()
 - GetNext()
 - Close()
Iterator for Table Scan (R)

Open() {
/** initialize variables */
 b = first block of R;
 t = first tuple in block b;
}

GetNext() {
 IF (t is past last tuple in block b) {
 set b to next block;
 IF (there is no next block)
 /** no more tuples */
 RETURN EOT;
 ELSE t = first tuple in b;
 }
 /** return current tuple */
 oldt = t;
 set t to next tuple in block b;
 RETURN oldt;
}

Close() {
/** nothing to be done */
}
Iterator for Select

\[\sigma_{R.A = "c"} \]

Open() {
 /* initialize child */
 Child.Open();
}

Close() {
 /* inform child */
 Child.Close();
}

GetNext() {
 LOOP:
 t = Child.GetNext();
 IF (t == EOT) {
 /* no more tuples */
 RETURN EOT;
 }
 ELSE IF (t.A == "c")
 RETURN t;
 ENDLOOP:
}

GetNext() {
 LOOP:
 t = Child.GetNext();
 IF (t == EOT) {
 /* no more tuples */
 RETURN EOT;
 }
 ELSE IF (t.A == "c")
 RETURN t;
 ENDLOOP:
Iterator for Sort

Open() {
 /** Bulk of the work is here */
 Child.Open();
 Read all tuples from Child
 and sort them
}

GetNext() {
 IF (more tuples)
 RETURN next tuple in order;
 ELSE RETURN EOT;
}

Close() {
 /** inform child */
 Child.Close();
}
Iterator for Tuple Nested Loop Join

- TNLJ (conceptually)
 for each $r \in \text{Lexp}$ do
 for each $s \in \text{Rexp}$ do
 if $\text{Lexp}.C = \text{Rexp}.C$, output r,s
Example 1: Left-Deep Plan

Question: What is the sequence of getNext() calls?
Example 2: Right-Deep Plan

Question: What is the sequence of getNext() calls?
Cost Measure for a Physical Plan

• There are many cost measures
 – Time to completion
 – Number of I/Os (we will see a lot of this)
 – Number of getNext() calls

• Tradeoff: Simplicity of estimation Vs. Accurate estimation of performance as seen by user
Why do we need Query Rewriting?

• **Pruning** the HUGE space of physical plans
 – Eliminating redundant conditions/operators
 – Rules that will improve performance with very high probability

• **Preprocessing**
 – Getting queries into a form that we know how to handle best

→ Reduces optimization time drastically without noticeably affecting quality
Some Query Rewrite Rules

• Transform one logical plan into another
 – Do not use statistics
• Equivalences in relational algebra
• Push-down predicates
• Do projects early
• Avoid cross-products if possible
Equivalences in Relational Algebra

\[R \bowtie S = S \bowtie R \quad \text{Commutativity} \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \quad \text{Associativity} \]

Also holds for: Cross Products, Union, Intersection

\[R \times S = S \times R \]
\[(R \times S) \times T = R \times (S \times T) \]
\[R \cup S = S \cup R \]
\[R \cup (S \cup T) = (R \cup S) \cup T \]
Apply Rewrite Rule (1)

\[\pi_{B,D} \]

\[\sigma_{R.A = \text{“c”} \land R.C = S.C} \]

\[R \times S \]

\[\pi_{B,D} \]

\[\sigma_{R.C = S.C} \]

\[\sigma_{R.A = \text{“c”}} \]

\[R \times S \]

\[\Pi_{B,D} [\sigma_{R.C=S.C} [\sigma_{R.A=\text{“c”}}(R \times S)]] \]
Rules: Project

Let: $X = \text{set of attributes}$

$Y = \text{set of attributes}$

$XY = X \cup Y$

$\pi_{xy}(R) = \pi_x[\pi_y(R)]$
Rules: $\sigma + \bowtie$ combined

Let $p = \text{predicate with only R attribs}$
$q = \text{predicate with only S attribs}$
$m = \text{predicate with only R,S attribs}$

$$\sigma_p (R \bowtie S) = [\sigma_p (R)] \bowtie S$$

$$\sigma_q (R \bowtie S) = R \bowtie [\sigma_q (S)]$$
Apply Rewrite Rule (2)

\[\pi_{B,D} \left(\pi_{B,D} \left(\sigma_{R.C = S.C} \left(\sigma_{R.A = "c"}(R) \right) \right) \right) \times S \]
Apply Rewrite Rule (3)

\[\pi_{B,D} \]

\[\sigma_{R.C = S.C} \]

\[\sigma_{R.A = \text{“}c\text{”}} \]

\[R \quad X \]

\[\sigma_{R.A = \text{“}c\text{”}} \]

\[S \]

\[\Pi_{B,D} [[\sigma_{R.A = \text{“}c\text{”}}(R)] \bowtie S] \]

Natural join
Rules: $\sigma + \otimes$ combined (continued)

$\sigma_{p \land q} (R \otimes S) = [\sigma_p (R)] \otimes [\sigma_q (S)]$

$\sigma_{p \land q \land m} (R \otimes S) =$

$\sigma_m \left[(\sigma_p R) \otimes (\sigma_q S) \right]$

$\sigma_{p \lor q} (R \otimes S) =$

$\left[(\sigma_p R) \otimes S \right] \cup \left[R \otimes (\sigma_q S) \right]$
Which are “good” transformations?

- \(\sigma_{p1 \land p2} (R) \rightarrow \sigma_{p1} [\sigma_{p2} (R)] \)
- \(\sigma_p (R \bowtie S) \rightarrow [\sigma_p (R)] \bowtie S \)
- \(R \bowtie S \rightarrow S \bowtie R \)
- \(\pi_x [\sigma_p (R)] \rightarrow \pi_x \{\sigma_p [\pi_{xz} (R)]\} \)
Conventional wisdom: do projects early

Example: $R(A, B, C, D, E)$

$P: (A=3) \land (B=\text{“cat”})$

$$
\pi_E \{ \sigma_p (R) \} \hspace{1cm} \text{vs.} \hspace{1cm} \pi_E \{ \sigma_p (\pi_{ABE}(R)) \}
$$
But: What if we have A, B indexes?

B = “cat”

Intersect pointers to get pointers to matching tuples

A=3
Bottom line:

• No transformation is always good
• Some are usually good:
 – Push selections down
 – Avoid cross-products if possible
 – Subqueries \rightarrow Joins
Avoid Cross Products (if possible)

Select B,D
From R,S,T,U
Where R.A = S.B \land
R.C = T.C \land R.D = U.D

• Which join trees avoid cross-products?
• If you can't avoid cross products, perform them as late as possible
More Query Rewrite Rules

• Transform one logical plan into another
 – Do not use statistics
• Equivalences in relational algebra
• Push-down predicates
• Do projects early
• Avoid cross-products if possible
• Use left-deep trees
• Subqueries → Joins
• Use of constraints, e.g., uniqueness