CPS 102: Discrete Mathematics

Assignment 2

1 (15 points)

Prove that $1 / 3$ is a recurring decimal number (in other words, it does not have a finite decimal representation). Hint: Use induction on the number of digits in any representation.

2 (4 points)

Prove that if n is an integer and $3 n+2$ is even, then n is even using

- an indirect proof (an indirect proof proves an argument of the form, if p is true then q is true, by proving the contrapositive - if q is false, then p is false)
- a proof by contradiction

3 (6 points)

Prove that except for $3,5,7$, no three consecutive odd positive integers are prime.

4 (15 points)

Prove that $\sqrt{2}$ is an irrational number. Hint: Any rational number can be represented using integers p and q, in the form $\frac{p}{q}$ such that $q \neq 0$ and with $G C D(p, q)=1$.

5 (5 points)

Prove that there are infinitely many primes.

6 (5 points)

Prove or disprove: If a, b, and m are positive integers, then $(a \bmod m)+(b \bmod m)=(a+b)$ $\bmod m$

7 (3 points)

Using mathematical induction prove that $1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!=(n+1)!-1$ whenever n is a positive integer.

8 (3 points)

Use mathematical induction to prove that $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+n \cdot(n+1) \cdot(n+2)=n(n+1)(n+2)(n+3) / 4$

9 (4 points)

Use mathematical induction to prove that a set with n elements has $n(n-1)(n-2) / 6$ subsets containing exactly three elements whenever n is an integer greater than or equal to 3

10 (5 points)

Find the flaw with the following "proof" that $a^{n}=1$ for all nonnegative integers n, whenever a is a nonzero real number.
Basic Step: $a^{0}=1$ is true by the definition of a^{0}.
Inductive Step: Assume that $a^{k}=1$ for all nonnegative integers k with $k \leq n$. Then note that $a^{n+1}=\frac{a^{n} \cdot a^{n}}{a^{n-1}}=\frac{1 \cdot 1}{1}=1$

11 (15 points)

Prove that for any integer n a $2^{n} \times 2^{n}$ grid with one corner square removed can be covered with L shaped tiles made up of 3 squares.

