GROUP THEORY

$$
\begin{aligned}
& \text { EDITH L AWW } \\
& 27.03 .2007
\end{aligned}
$$

PUZZLE
 Group Theory in the Bedroom

It's easy to turn your mattress properly! Turn it over and end -to- end.

4. Let matross fall gently towards head of bed as shown here:

5.

Push alternatel on corners A and B to position mattress on bed.

TURNING A MATTRESS IS A JOB FOR TWO PEOPLE Don't risk damage to the mattress or personal injury by doing it yourself.

Reference: Scientific American, 93(5)-395

WHAT IS A GROUP?

A FAMILIAR GROUP

To solve the equation $4+x=20$

$$
\begin{aligned}
-4+(4+x) & =-4+20 & & \text { Closure } \\
(-4+4)+x & =16 & & \text { Associativity } \\
0+x & =16 & & \text { Inverse } \\
x & =16 & & \text { Identity }
\end{aligned}
$$

What makes this calculation possible are the abstract properties of integers under addition.

Reference: Group Theory Lecture by Steven Rudich, 2000

GROUP

An ordered pair (S, \star) where S is a set and \star is a binary operation on S.

Closure

$$
a, b \in S \Rightarrow(a \diamond b) \in S
$$

Associativity

$$
a, b, c \in S \Rightarrow(a \bullet b) \bullet c=a \diamond(b \diamond c)
$$

Identity

$$
\exists e \in S \text { s.t. } \forall a \in S a \leftrightarrow e=e \bullet a=a
$$

Inverse

$$
\forall a \in \mathrm{~S} \exists a^{-1} \in S \text { s.t. } a \leftrightarrow a^{-1}=a^{-1} \bullet a=e
$$

$(\mathbb{Z},+)$ IS A GROUP

Closure

The sum of two integers is an integer
Associativity

$$
(a+b)+c=a+(b+c)
$$

Identity

For every integer $a, a+0=0+a=a$

Inverse

For every integer $a, a+(-a)=(-a)+a=0$

GROUP OR NOT

	Closure	Associativity	Identity	Inverse
$(Z,+)$	\checkmark	\checkmark	\checkmark	\checkmark
$(Z-\{0\}, x)$	\checkmark	\checkmark	\checkmark	x
$(\{x \in \mathrm{R} \mid-5<x<5\},+)$	x	x	\checkmark	\checkmark
$(\mathrm{R},-)$	\checkmark	x	x	x
$\left(Z_{\mathrm{n}},+\right)$	\checkmark	\checkmark	\checkmark	\checkmark

N.B. $(\{x \in R \mid-5<x<5\},+)$ is not closed, so it doesn't make sense to talk about associativity when some of the results of addition can be undefined.

CAYLEY TABLE

Finite Groups can be represented by a Cayley Table.

$\left(Z_{4},+\right)$				
+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

ABSTRACTION

UNIQUE IDENTITY

Theorem

A group has at most one identity element.

Proof

Suppose e and f are both identities of (S, \star), then $f=e \diamond f=e$.

CANCELLATION THEOREM

Theorem
The left and right cancellation laws hold.

$$
\begin{aligned}
& a \diamond b=a \leftrightarrow c \Rightarrow b=c \\
& b \leftrightarrow a=c * a \Rightarrow b=c
\end{aligned}
$$

Proof

$$
\begin{aligned}
& a \bullet b=a \bullet c \\
\Leftrightarrow & a^{-1}(a \bullet b)=a^{-1} \bullet(a \bullet c) \\
\Leftrightarrow & \left(a^{-1} \bullet a\right) \bullet b=\left(a^{-1} a\right) \\
\Leftrightarrow & e \\
\Leftrightarrow & b=c
\end{aligned}
$$

UNIQUE INVERSE

Theorem

Every element in a group has an unique inverse.

Proof

Suppose b and c are both inverses of a, then

$$
\begin{aligned}
& a \bullet b=e \\
& a \bullet c=e
\end{aligned}
$$

i.e. $a \bullet b=a \diamond c$. By cancellation theorem, $b=c$.

PERMUTATION THEOREM

Theorem

Let $\left(\left\{e, g_{1}, g_{2}, \ldots, g_{n}\right\}, *\right)$ be a group and $k \in\{1, \ldots, n\}$, $G_{k}=\left\{e \bullet g_{k}, g_{1} \bullet g_{k}, g_{2} \bullet g_{k}, \ldots, g_{n} \bullet g_{k}\right\}$
must be a permutation of the elements in G.

Proof

Suppose that two elements of G_{k} are equal, i.e. $g_{i} \diamond g_{k}=g_{j} \diamond g_{k}$. By cancellation theorem, $g_{i}=g_{j}$.
Therefore, G_{k} contains each element in G once and once only.

IMPLICATIONS

Δ	e	a
e	e	a
a	a	e

	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

Groups of two or three elements are unique and abelian.
A group is abelian if its binary operation on the set is commutative, i.e. $\forall a, b \in \mathrm{~S} a \bullet b=b \rightharpoonup a$

SYMMETRY

AND

PERMUTATION

SYMMETRIES OF THE SQUARE

R_{0}

R_{90}

R_{180}

R_{270}

F_{I}

F

F/

F

SYMMETRY GROUP

Let $\mathrm{Y}_{\mathrm{SQ}}=\left\{\mathrm{R}_{0}, \mathrm{R}_{90}, \mathrm{R}_{180}, \mathrm{R}_{270}, \mathrm{~F}_{\mathrm{l}}, \mathrm{F}_{-}, \mathrm{F}_{/}, \mathrm{F}_{\backslash}\right\}$ Let O be the binary operation of composition

$\left(\mathrm{Y}_{\mathrm{SQ}}, \mathrm{O}\right)$ is a group!

O^{\prime}	\mathbf{R}_{0}	\mathbf{R}_{90}	\mathbf{R}_{180}	\mathbf{R}_{270}	\mathbf{F}_{l}	\mathbf{F}_{-}	$\mathbf{F}_{/}$	\mathbf{F}_{\backslash}
\mathbf{R}_{0}	\mathbf{R}_{0}	\mathbf{R}_{90}	\mathbf{R}_{180}	\mathbf{R}_{270}	$\mathbf{F}_{/}$	\mathbf{F}_{-}	$\mathbf{F}_{/}$	\mathbf{F}_{\backslash}
\mathbf{R}_{90}	\mathbf{R}_{90}	\mathbf{R}_{180}	\mathbf{R}_{270}	\mathbf{R}_{0}	\mathbf{F}_{\backslash}	$\mathbf{F}_{/}$	$\mathbf{F}_{/}$	\mathbf{F}_{-}
\mathbf{R}_{180}	\mathbf{R}_{180}	\mathbf{R}_{270}	\mathbf{R}_{0}	\mathbf{R}_{90}	\mathbf{F}_{-}	$\mathbf{F}_{/}$	\mathbf{F}_{\backslash}	$\mathbf{F}_{/}$
\mathbf{R}_{270}	\mathbf{R}_{270}	\mathbf{R}_{0}	\mathbf{R}_{90}	\mathbf{R}_{180}	$\mathbf{F}_{/}$	\mathbf{F}_{\backslash}	\mathbf{F}_{-}	$\mathbf{F}_{/}$
\mathbf{F}_{l}	\mathbf{F}_{l}	$\mathbf{F}_{/}$	\mathbf{F}_{-}	\mathbf{F}_{\backslash}	\mathbf{R}_{0}	\mathbf{R}_{180}	\mathbf{R}_{90}	\mathbf{R}_{270}
\mathbf{F}_{-}	\mathbf{F}_{-}	\mathbf{F}_{\backslash}	\mathbf{F}_{l}	$\mathbf{F}_{/}$	\mathbf{R}_{180}	\mathbf{R}_{0}	\mathbf{R}_{270}	\mathbf{R}_{90}
$\mathbf{F}_{/}$	$\mathbf{F}_{/}$	\mathbf{F}_{-}	\mathbf{F}_{\backslash}	\mathbf{F}_{l}	\mathbf{R}_{270}	\mathbf{R}_{90}	\mathbf{R}_{0}	\mathbf{R}_{180}
\mathbf{F}_{\backslash}	\mathbf{F}_{\backslash}	$\mathbf{F}_{/}$	$\mathbf{F}_{/}$	\mathbf{F}_{-}	\mathbf{R}_{90}	\mathbf{R}_{270}	\mathbf{R}_{180}	\mathbf{R}_{0}

OTHER EXAMPLES

\bullet	I	F_{l}
I	I	F_{l}
F_{l}	F_{l}	I

-	R_{0}	R_{120}	R_{240}
R_{0}	R_{0}	R_{120}	R_{240}
R_{120}	R_{120}	R_{240}	R_{120}
R_{240}	R_{240}	R_{0}	R_{120}

CHANGE RINGING

Cathedral bells in England have been rung by permuting the order of a round of bells.

Image Source: MIT Guild of Bellringers

PLAIN BOB MINIMUS

Let $\mathrm{a}=(12)\left(\begin{array}{ll}3 & 4\end{array}\right), \mathrm{b}=\binom{2}{3}, \mathrm{c}=\left(\begin{array}{ll}3 & 4\end{array}\right)$
$Y_{\text {BOB }}=\left\{1, a, a b, a b a,(a b)^{2},(a b)^{2} a,(a b)^{3},(a b)^{3} a\right\}$

$\mathrm{Y}_{\mathrm{BOB}}$	$(\mathrm{ab})^{3} \mathrm{ac} \mathrm{Y}_{\mathrm{BOB}}$	$\left((\mathrm{ab})^{3} \mathrm{ac}\right)^{2} \mathrm{Y}_{\text {BOB }}$
\downarrow	\downarrow	\downarrow
1234	3142	1423
2143	3124	4132
2413	3214	4312
4231	2341	3421
4321	2431	3241
3412	4213	2314
3142	4123	2134
1324	1432	1243

Audio: Courtesy of Tim Rose

DIHEDRAL GROUP

Claim:
$Y_{B O B}$ and $Y_{S Q}$ are the same group, D_{4}.

R0	Fi	$\mathrm{F}_{1} \mathrm{~F}$ /	$\mathrm{F}_{1} \mathrm{~F} / \mathrm{F}_{1}$	$\mathrm{Y}_{\mathrm{BOB}}=\mathrm{Y}_{\text {SQ }}$
12				
34	43		31	234
R_{0}	F_{1}	R_{270}	F/	2143
$(\mathrm{F} \mid \mathrm{F}))^{2}$	$(\mathrm{F} / \mathrm{F}){ }^{2} \mathrm{~F}$	$\left(\mathrm{F}_{1} \mathrm{~F} /\right)^{3}$	$(\mathrm{Fl} F \text {) })^{3} \mathrm{Fl}$	4231
$4{ }_{4} 4$	34	3	13	4321 3412
21	12	42	24	3142
R_{180}	F	R90	F	

A check digit is an alphanumeric character added to a number to detect human errors.

$$
f\left(a_{1}, \ldots, a_{n-1}\right)+a_{n}=0
$$

Most common errors are single digit errors ($a \rightarrow b$) and transposition errors ($\mathrm{ab} \rightarrow \mathrm{ba}$).

Question

Is there a method that detects 100% of both errors?

VERHEOFF ALGORITHM

Let \diamond be the operation for the non-abelian group D_{5}.

\diamond	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	0	6	7	8	9	5
2	2	3	4	0	1	7	8	9	5	6
3	3	4	0	1	2	8	9	5	6	7
4	4	0	1	2	3	9	5	6	7	8
5	5	9	8	7	6	0	4	3	2	1
6	6	5	9	8	7	1	0	4	3	2
7	7	6	5	9	8	2	1	0	4	3
8	8	7	6	5	9	3	2	1	0	4
9	9	8	7	6	5	4	3	2	1	0

Let $\sigma=(0)(1,4)(2,3)(5,6,7,8,9)$, then

$$
\sigma^{n-1}\left(a_{1}\right) \diamond \sigma^{n-2}\left(a_{2}\right) \diamond \ldots \diamond \sigma^{2}\left(a_{n-2}\right) \diamond \sigma\left(a_{n-1}\right) \diamond a_{n}=0
$$

VERHEOFF ALGORITHM

D5 and σ are chosen such that the algorithm
(a) detects all single digit errors

$$
\text { if } a \neq b \text {, then } \sigma^{i}(a) \neq \sigma^{i}(b)
$$

(b) detects all transposition errors

$$
\text { if } \mathrm{a} \neq \mathrm{b} \text {, then } \sigma^{i+1}(\mathrm{a}) \diamond \sigma^{i}(\mathrm{~b}) \neq \sigma^{i+1}(\mathrm{~b}) \diamond \sigma^{i}(\mathrm{a})
$$

STRUCTURE

ORDER

Order of a group
$|G|=$ The number of elements in the group.
Order of a group element
$|g|=$ The smallest number of times the binary operation is applied to g before the identity e is reached

$$
|g|=k \text { if } g^{k}=e
$$

Examples

$$
\left|\left(Y_{S Q}, O\right)\right|=8 \quad\left|F_{l}\right|=2 \quad\left|R_{90}\right|=4 \quad|(Z,+)|=\infty
$$

SUBGROUP

Definition

(H, \star) is a subgroup of (S, \star) iff H is a group with respect to \bullet and $H \subseteq S$.

Examples
\checkmark Is $(2 Z,+)$ a subgroup of $(Z,+)$?
x Is ($\left.\left\{\mathrm{F}_{1}, \mathrm{~F}_{-}, \mathrm{F} /, \mathrm{F}\right\}, \mathrm{O}\right)$ a subgroup of $\left(\mathrm{Y}_{\mathrm{SQ}}, \mathrm{O}\right)$?
\checkmark Is ($\left\{\mathrm{R}_{0}, \mathrm{R}_{90}, \mathrm{R}_{180}, \mathrm{R}_{270}\right\}$, O) a subgroup of ($\mathrm{Y}_{\mathrm{SQ}}, \mathrm{O}$)?

GENERATOR

Definition

A set $T \subseteq S$ is said to generate the group (S, \star) if every element in S can be generated from a finite product of the elements in T. If T is a single element, it is called a generator of the group.

Examples

$\left\{\mathrm{F}_{\mathrm{l}}, \mathrm{R}_{90}\right\}$ generates Y_{SQ}
$\{1,-1\}$ generates $(Z,+)$
$\{4\}$ is a generator for $\left(Z_{7,+}\right)$
N.B. F_{\downarrow} and R_{90} is each a generator, but only the set of both generators generates a group.

LAGRANGE THEOREM

Lagrange Theorem

If H is a subgroup of a finite group G, then the order of H divides the order of G.

Corollary

If G is a finite group, $a^{|G|}=1$.
Proof:
If a generates the subgroup H, then

$$
a^{|G|}=a^{k|H|}=\left(a^{\mid H I}\right)^{k}=1^{k}=1 .
$$

MULTIPLICATION MODULO N

Let $Z_{n}-\{0\}=\{1,2,3, \ldots n-1\}$
Let $\%=$ multiplication $\bmod n$

$$
Z{ }^{*}{ }_{n}=\{x \mid 1 \leq x \leq n \text { and } \operatorname{GCD}(x, n)=1\} \text { is a group }
$$

CHECKING FOR PRIME

Fermat's (Little) Theorem

 If n is prime, and $a \in Z^{*}{ }_{\mathrm{n}}$, then$$
a^{n-1}=1(\bmod n)
$$

Proof

If n is prime, $\left(Z^{*}{ }_{n}=\{1,2, \ldots, n-1\}, \times\right)$ is a group with order $n-1$. The rest of the proof follows from Lagrange Theorem.

Application

To check if a number n is prime, pick any number a, if $\mathrm{a}^{\mathrm{n}-1} \bmod \mathrm{n}$ is not 1 , then it is not prime.

15-PUZZLE

Image Source: Fifteen puzzle, Wikipedia
Proof: A New Look at the Fifteen Puzzle, E.L. Spitznagel

3-CYCLES

To permute 3 blocks in a row cyclically, e.g. $(\mathrm{abc}) \rightarrow(\mathrm{bca})$

a	b	c				
x	y		\rightarrow	x	a	b
:---	:---	:---				
y		c	\rightarrow	x	b	c
:---	:---	:---				
y		a	\rightarrow	b	c	a
:---	:---	:---				
x	y					

To permute any 3 blocks in the 15 -puzzle 1. Move a, b, c to the first, second and third row
2. Move a, b, c to the extreme right column
3. Permute cyclically
4. Return a, b, c to original position, permuted

Every legal configuration can be obtained through a sequence of 3 -cycle permutations.

EVEN PERMUTATIONS

Going from 13-15-14 to 13-14-15 takes one transposition (odd permutation).

But the composition of 3-cycles generates only even permutation.

Why? Every product of two transpositions can be written as a product of 3 -cycles.

$$
\begin{aligned}
(a, b)(b, c) & =(a, c, b) \\
(a, b)(c, d) & =(a, c, b)(b, d, c)
\end{aligned}
$$

PROOF OF IMPOSSIBILITY

Sketch of the Proof

All legal moves in the 15 -puzzle are generated from 3-cycle permutations.

3 -cycles generate A_{15} (the group of even permutation) which is a subgroup of S_{15}, the group of all permutations of 15 objects.

Going from 13-15-14 to 13-14-15 takes an odd permutation. Therefore, no valid moves can achieve the 14-15 puzzle.

THE QUINTIC EQUATION

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

PUZZZLES

SOLUTION
 Group Theory in the Bedroom

Reference: Scientific American, 93(5)-395

PERMUTATION PUZZLES

The Rubik's Cube

Pyraminx

The Hockeypuck Puzzle

Lights Out

Masterball

Megaminx

THE END

