GROUP THEORY

EDITH LAW 27.03.2007

PUZZLE GROUP THEORY IN THE BEDROOM

Reference: Scientific American, 93(5)-395

WHAT IS A GROUP?

A FAMILIAR GROUP

To solve the equation 4 + x = 20

-4 + (4+x) = -4 + 20	Closure
(-4+4) + x = 16	Associativity
0 + x = 16	Inverse
x = 16	Identity

What makes this calculation possible are the abstract properties of integers under addition.

Reference: Group Theory Lecture by Steven Rudich, 2000

GROUP

An ordered pair (S, \blacklozenge) where S is a set and \blacklozenge is a binary operation on S.

Closure $a, b \in S \Rightarrow (a \blacklozenge b) \in S$ Associativity $a, b, c \in S \Rightarrow (a \blacklozenge b) \blacklozenge c = a \blacklozenge (b \blacklozenge c)$ Identity $\exists e \in S \text{ s.t. } \forall a \in S \ a \blacklozenge e = e \blacklozenge a = a$ Inverse

 $\forall a \in S \exists a^{-1} \in S \text{ s.t. } a \blacklozenge a^{-1} = a^{-1} \blacklozenge a = e$

$(\mathbb{Z},+)$ is a group

Closure

The sum of two integers is an integer

Associativity

(a + b) + c = a + (b + c)

Identity

For every integer a, a + 0 = 0 + a = a

Inverse

For every integer a, a + (-a) = (-a) + a = 0

GROUP OR NOT

	Closure	Associativity	Identity	Inverse	
(Z, +)	\checkmark	\checkmark	\checkmark	\checkmark	
(Z-{0}, ×)	\checkmark	\checkmark	\checkmark	×	
$(\{x \in R \mid -5 < x < 5\},+)$	×	×	\checkmark	\checkmark	
(R, -)	\checkmark	×	×	×	
(Z _n , +)	~	\checkmark	~	\checkmark	

N.B. $(\{x \in R \mid -5 < x < 5\}, +)$ is not closed, so it doesn't make sense to talk about associativity when some of the results of addition can be undefined.

CAYLEY TABLE

Finite Groups can be represented by a Cayley Table.

 $(Z_4, +)$ + 0 1 2 3

0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

ABSTRACTION

UNIQUE IDENTITY

Theorem

A group has at most one identity element.

Proof

Suppose *e* and *f* are both identities of (S, \blacklozenge) , then $f = e \blacklozenge f = e$.

CANCELLATION THEOREM

Theorem

The left and right cancellation laws hold. $a \diamond b = a \diamond c \implies b = c$ $b \diamond a = c \diamond a \implies b = c$

Proof

$$a \diamond b = a \diamond c$$

$$\Leftrightarrow a^{-1} \diamond (a \diamond b) = a^{-1} \diamond (a \diamond c)$$

$$\Leftrightarrow (a^{-1} \diamond a) \diamond b = (a^{-1} \diamond a) \diamond c$$

$$\Leftrightarrow e \diamond b = e \diamond c$$

$$\Leftrightarrow b = c$$

UNIQUE INVERSE

Theorem

Every element in a group has an unique inverse.

Proof

Suppose *b* and *c* are both inverses of *a*, then $a \diamond b = e$ $a \diamond c = e$ i.e. $a \diamond b = a \diamond c$. By cancellation theorem, b = c.

PERMUTATION THEOREM

Theorem

Let $(\{e, g_1, g_2, ..., g_n\}, \bigstar)$ be a group and $k \in \{1, ..., n\},$ $G_k = \{e \blacklozenge g_k, g_1 \blacklozenge g_k, g_2 \blacklozenge g_k, ..., g_n \blacklozenge g_k\}$ must be a permutation of the elements in G.

Proof

Suppose that two elements of G_k are equal, i.e. $g_i \diamond g_k = g_j \diamond g_k$. By cancellation theorem, $g_i = g_j$. Therefore, G_k contains each element in G once and once only.

IMPLICATIONS

Groups of two or three elements are unique and *abelian*. A group is *abelian* if its binary operation on the set is commutative, i.e. $\forall a, b \in S$ $a \diamond b = b \diamond a$

SYMMETRY AND PERMUTATION

SYMMETRIES OF THE SQUARE

 R_0

R₉₀

R₁₈₀

R₂₇₀

SYMMETRY GROUP

0	R ₀	R 90	R ₁₈₀	R ₂₇₀	F	\mathbf{F}_{-}	F/	F
R ₀	R ₀	R 90	R ₁₈₀	R ₂₇₀	\mathbf{F}_{I}	F _	F/	F
R 90	R 90	R ₁₈₀	R ₂₇₀	R ₀	F	F/	\mathbf{F}_{I}	F _
R ₁₈₀	R ₁₈₀	R ₂₇₀	R ₀	R ₉₀	F _	\mathbf{F}_{I}	F	F /
R 270	R ₂₇₀	R ₀	R ₉₀	R ₁₈₀	F/	F	F _	\mathbf{F}_{I}
\mathbf{F}_{I}	\mathbf{F}_{I}	F/	F _	F	R ₀	R ₁₈₀	R ₉₀	R 270
F _	F _	F	\mathbf{F}_{I}	F/	R ₁₈₀	R ₀	R 270	R 90
F/	F/	F _	F	\mathbf{F}_{I}	R ₂₇₀	R ₉₀	R ₀	R ₁₈₀
F	F	\mathbf{F}_{I}	F/	\mathbf{F}_{-}	R 90	R 270	R ₁₈₀	R ₀

 (Y_{SQ}, O) is a group!

OTHER EXAMPLES

•	Ι	F
Ι	Ι	F
F	F	Ι

•	R ₀	R ₁₂₀	R ₂₄₀
R ₀	R ₀	R ₁₂₀	R ₂₄₀
R ₁₂₀	R ₁₂₀	R ₂₄₀	R ₁₂₀
R ₂₄₀	R ₂₄₀	R ₀	R ₁₂₀

CHANGE RINGING

Cathedral bells in England have been rung by permuting the order of a round of bells.

Image Source: MIT Guild of Bellringers

PLAIN BOB MINIMUS Let $a=(1\ 2)(3\ 4)$, $b=(2\ 3)$, $c=(3\ 4)$ $Y_{BOB} = \{1, a, ab, aba, (ab)^2, (ab)^2a, (ab)^3, (ab)^3a\}$

(ab) ³ ac Y _{BOB}	$((ab)^3ac)^2 Y_{BOB}$
Ļ	\downarrow
3142	1423
3124	4132
3214	4312
2341	3421
2431	3241
4213	2314
4123	2134
1432	1243
	J 3 1 4 2 3 1 2 4 3 1 2 4 3 2 1 4 2 3 4 1 2 4 3 1 4 2 1 3 4 1 2 3

Audio: Courtesy of Tim Rose

DIHEDRAL GROUP

Claim:

 Y_{BOB} and Y_{SQ} are the same group, D₄.

ERROR CORRECTING CODE

A check digit is an alphanumeric character added to a number to detect human errors.

 $f(a_1, ..., a_{n-1}) + a_n = 0$

Most common errors are single digit errors $(a \rightarrow b)$ and transposition errors $(ab \rightarrow ba)$.

Question

Is there a method that detects 100% of both errors?

VERHEOFF ALGORITHM

Let \diamond be the operation for the non-abelian group D₅.

\diamond	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	0	6	7	8	9	5
2	2	3	4	0	1	7	8	9	5	6
3	3	4	0	1	2	8	9	5	6	7
4	4	0	1	2	3	9	5	6	7	8
5	5	9	8	7	6	0	4	3	2	1
6	6	5	9	8	7	1	0	4	3	2
7	7	6	5	9	8	2	1	0	A	3
8	8	7	6	5	9	3	2	1	0	4
9	9	8	7	6	5	4	3	2	1	0

Let $\sigma = (0)(1,4)(2,3)(5,6,7,8,9)$, then $\sigma^{n-1}(a_1) \diamond \sigma^{n-2}(a_2) \diamond ... \diamond \sigma^2(a_{n-2}) \diamond \sigma(a_{n-1}) \diamond a_n = 0$

VERHEOFF ÅLGORITHM

D5 and σ are chosen such that the algorithm

(a) detects all single digit errors if $a \neq b$, then $\sigma^{i}(a) \neq \sigma^{i}(b)$

(b) detects all transposition errors if a \neq b, then $\sigma^{i+1}(a) \diamond \sigma^{i}(b) \neq \sigma^{i+1}(b) \diamond \sigma^{i}(a)$

STRUCTURE

ORDER

Order of a group

|G| = The number of elements in the group.

Order of a group element

|g| = The smallest number of times the binary
operation is applied to g before the identity e
is reached

$$|g| = k \text{ if } g^k = e$$

Examples

 $|(Y_{SQ}, O)| = 8$ $|F_1| = 2$ $|R_{90}| = 4$ $|(Z, +)| = \infty$

SUBGROUP

Definition

 (H, \blacklozenge) is a subgroup of (S, \blacklozenge) iff *H* is a group with respect to \blacklozenge and $H \subseteq S$.

Examples

- ✓ Is (2Z, +) a subgroup of (Z, +)?
- × Is ({F₁, F_, F₁, F₁, F₁}, O) a subgroup of (Y_{SQ} , O)?
- ✓ Is ({ R_0 , R_{90} , R_{180} , R_{270} }, O) a subgroup of (Y_{SQ} , O)?

GENERATOR

Definition

A set $T \subseteq S$ is said to generate the group (S, \blacklozenge) if every element in S can be generated from a finite product of the elements in T. If T is a single element, it is called a **generator** of the group.

Examples

{F₁, R₉₀} generates Y_{SQ}
{1, -1} generates (Z,+)
{4} is a generator for (Z₇,+)

N.B. F1 and R90 is each a generator, but only the set of both generators generates a group.

LAGRANGE THEOREM

Lagrange Theorem

If H is a subgroup of a finite group G, then the order of H divides the order of G.

Corollary

If G is a finite group, $a^{|G|} = 1$.

Proof: If *a* generates the subgroup *H*, then $a^{|G|} = a^{k|H|} = (a^{|H|})^k = 1^k = 1$.

MULTIPLICATION MODULO N

Let Z_n -{0} = {1, 2, 3, ... n-1} Let \circledast = multiplication mod n

 $Z_{n}^{*} = \{ x \mid 1 \le x \le n \text{ and } GCD(x,n) = 1 \} \text{ is a group}$

CHECKING FOR PRIME

Fermat's (Little) Theorem If *n* is prime, and $a \in Z^*_n$, then $a^{n-1} = 1 \pmod{n}$

Proof

If *n* is prime, $(Z^*_n = \{1, 2, ..., n-1\}, \times)$ is a group with order *n*-1. The rest of the proof follows from Lagrange Theorem.

Application

To check if a number n is prime, pick any number a, if $a^{n-1} \mod n$ is not 1, then it is not prime.

15-PUZZLE

Image Source: Fífteen puzzle, Wikipedia Proof: A New Look at the Fífteen Puzzle, E.L. Spitznagel

3-CYCLES

To permute 3 blocks in a row cyclically, e.g. $(a b c) \rightarrow (b c a)$

To permute *any* 3 blocks in the 15-puzzle 1. Move a, b, c to the first, second and third row 2. Move a, b, c to the extreme right column 3. Permute cyclically 4. Return a, b, c to original position, permuted Every legal configuration can be obtained through a sequence of 3-cycle permutations.

EVEN PERMUTATIONS

Going from 13-15-14 to 13-14-15 takes one transposition (**odd** permutation).

But the composition of 3-cycles generates only **even** permutation.

Why? Every product of two transpositions can be written as a product of 3-cycles.

(a, b)(b, c) = (a, c, b)(a, b)(c, d) = (a, c, b)(b, d, c)

PROOF OF IMPOSSIBILITY

Sketch of the Proof

All legal moves in the 15-puzzle are generated from 3-cycle permutations.

3-cycles generate A_{15} (the group of even permutation) which is a **subgroup** of S_{15} , the group of all permutations of 15 objects.

Going from 13-15-14 to 13-14-15 takes an odd permutation. Therefore, no valid moves can achieve the 14-15 puzzle.

PUZZLES

SOLUTION GROUP THEORY IN THE BEDROOM

Klein Four-Group

Reference: Scientific American, 93(5)-395

PERMUTATION PUZZLES

The Rubik's Cube

The Hockeypuck Puzzle

Masterball

Pyraminx

Lights Out

Megaminx

THE END