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 Puzzle 
Group Theory in the Bedroom

Reference: Scientific American, 93(5)-395 



What is a Group?



A Familiar Group

To solve the equation 4 + x = 20

-4 + (4+x) = -4 + 20       Closure
(-4+4) + x = 16              Associativity
        0  + x = 16              Inverse
               x = 16              Identity 

What makes this calculation possible are the 
abstract properties of integers under addition.

Reference: Group Theory Lecture by Steven Rudich, 2000



Group
An ordered pair (S, ) where S is a set and  is 
a binary operation on S.  

   Closure           
a, b ∈ S ⇒ (a  b) ∈ S          

Associativity    
a, b, c ∈ S ⇒ (a  b)  c = a  (b  c) 

Identity            
∃ e ∈ S   s.t.   ∀ a ∈ S  a  e = e  a = a

Inverse             
∀ a ∈ S ∃ a-1 ∈ S   s.t.   a  a-1 = a-1 a = e



(Z,+) is a group

Closure 
The sum of two integers is an integer

Associativity
(a + b) + c = a + (b + c)   

Identity
For every integer a, a + 0 = 0 + a= a

Inverse 
For every integer a, a + (-a) = (-a) + a = 0



Group or Not

Closure Associativity Identity Inverse

(Z, +)    

(Z-{0}, ×)    

({x ∈ R-5 < x < 5},+)    

(R, -)    

(Zn, +)    

N.B.  ({x ∈ R-5 < x < 5},+) is not closed, so it doesn’t make sense to talk about associativity 
when some of the results of addition can be undefined.  



Cayley Table

Finite Groups can be represented by a Cayley Table.

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

(Z4 ,+)



Abstraction



Unique Identity
Theorem 

A group has at most one identity element.

Proof

Suppose e and f are both identities of (S, ),
then  f = e  f = e.                                       



Cancellation Theorem
Theorem 

The left and right cancellation laws hold.

a  b = a  c   ⇒   b = c
b  a = c  a   ⇒   b = c

Proof

  a  b = a  c
⇔  a-1  (a  b) = a-1  (a  c)
⇔ (a-1  a)  b  = (a-1  a)  c
⇔ e  b = e  c
⇔ b = c



Unique Inverse
Theorem 

Every element in a group has an unique inverse.

Proof

Suppose b and c are both inverses of a, then  
a  b = e
a  c = e                                     

i.e. a  b = a  c.  By cancellation theorem, b = c.



Permutation Theorem
Theorem 

Let ({e, g1, g2, ..., gn}, ) be a group and k ∈{1, ... , n},

  Gk = { e  gk, g1  gk, g2  gk, ..., gn  gk}
must be a permutation of the elements in G. 

Proof

Suppose that two elements of  Gk are equal, i.e.                                 
gi  gk = gj  gk.  By cancellation theorem, gi = gj.

Therefore, Gk contains each element in G once and 
once only.  



Implications

 e a

e e a

a a e

 e a b

e e a b

a a b e

b b e a

Groups of two or three elements are unique and abelian.

A group is abelian if its binary operation on the set is 
commutative, i.e. ∀ a, b ∈ S   a  b  = b  a



Symmetry 
and 

Permutation



Symmetries of the square

R0 R90 R180 R270

F| F_ F/ F\



Symmetry Group
Let YSQ = { R0, R90, R180, R270, F| ,F_,F/, F\ } 
Let  be the binary operation of composition  

                    (YSQ,  ) is a group!

 

 R0 R90 R180 R270 F| F_ F/ F\

R0 R0 R90 R180 R270 F| F_ F/ F\

R90 R90 R180 R270 R0 F\ F/ F| F_

R180 R180 R270 R0 R90 F_ F| F\ F/

R270 R270 R0 R90 R180 F/ F\ F_ F|

F| F| F/ F_ F\ R0 R180 R90 R270

F_ F_ F\ F| F/ R180 R0 R270 R90

F/ F/ F_ F\ F| R270 R90 R0 R180

F\ F\ F| F/ F_ R90 R270 R180 R0



Other Examples

A
● I F|

I I F|

F| F| I

● I

I I

F

Cl
C

H

Br

● R0 R120 R240

R0 R0 R120 R240

R120 R120 R240 R120

R240 R240 R0 R120



Change Ringing
Cathedral bells in England have been rung by 
permuting the order of a round of bells.

Image Source: MIT Guild of Bellringers



Plain Bob Minimus
Let a=(1 2)(3 4), b=(2 3), c=(3 4) 
YBOB = {1, a, ab, aba, (ab)2,(ab)2a, (ab)3, (ab)3a}

1 2 3 4
2 1 4 3
2 4 1 3
4 2 3 1
4 3 2 1
3 4 1 2
3 1 4 2
1 3 2 4

YBOB

↓
3 1 4 2
3 1 2 4
3 2 1 4
2 3 4 1
2 4 3 1
4 2 1 3
4 1 2 3
1 4 3 2

(ab)3ac YBOB

↓
1 4 2 3
4 1 3 2
4 3 1 2
3 4 2 1
3 2 4 1
2 3 1 4
2 1 3 4
1 2 4 3

((ab)3ac)2 YBOB

↓

Audio: Courtesy of Tim Rose



Dihedral Group
Claim: 
YBOB  and YSQ  are the same group, D4.

YBOB=YSQ

↓
1 2 3 4
2 1 4 3
2 4 1 3
4 2 3 1
4 3 2 1
3 4 1 2
3 1 4 2
1 3 2 4

R0

R0

F|

F|

R270

F| F/ 

F/

F| F/F|

R180

(F| F/)2

F_

(F| F/)2F|

R90

(F| F/)3

F\ 

(F| F/)3 F|

1 1
1 1

1 1
1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

4 4
4 4

44
44



Error Correcting Code
A check digit is an alphanumeric character added to 
a number to detect human errors.

f(a1, ..., an-1) + an = 0

Most common errors are single digit errors (a→b) 
and transposition errors (ab→ba).  

Question

Is there a method that detects 100% of both errors?



Verheoff Algorithm

◊ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 0 6 7 8 9 5

2 2 3 4 0 1 7 8 9 5 6

3 3 4 0 1 2 8 9 5 6 7

4 4 0 1 2 3 9 5 6 7 8

5 5 9 8 7 6 0 4 3 2 1

6 6 5 9 8 7 1 0 4 3 2

7 7 6 5 9 8 2 1 0 4 3

8 8 7 6 5 9 3 2 1 0 4

9 9 8 7 6 5 4 3 2 1 0

Let ◊ be the operation for the non-abelian group D5.

Let σ = (0)(1,4)(2,3)(5,6,7,8,9), then 
σ n-1 (a1) ◊ σ n-2 (a2) ◊ ... ◊ σ 2 (an-2) ◊ σ (an-1) ◊ an = 0



Verheoff Algorithm
D5 and σ are chosen such that the algorithm 

(a) detects all single digit errors 
if a ≠ b, then σi(a) ≠ σi(b)

(b) detects all transposition errors
if a ≠ b, then σi+1(a) ◊ σi(b) ≠ σi+1(b) ◊ σi(a)

   



Structure



Order
Order of a group

|G| = The number of elements in the group.  

Order of a group element 
|g| = The smallest number of times the binary 
operation is applied to g before the identity e 
is reached

|g| = k  if g k = e

Examples

|(YSQ, )| = 8 |F|| = 2 |R90| = 4 |(Z,+)| =∞



Subgroup
Definition 

(H, ) is a subgroup of (S, ) iff H is a group 
with respect to  and H ⊆ S.

Examples

Is (2Z,+) a subgroup of (Z,+)?

Is ({R0, R90, R180, R270}, ) a subgroup of (YSQ,  )?

Is ({F|, F_, F/, F\}, ) a subgroup of (YSQ,  )?









Generator
Definition 

A set T ⊆ S is said to generate the group 
(S, ) if every element in S can be generated 
from a finite product of the elements in T.

If T is a single element, it is called a generator 
of the group.

Examples
{F|, R90} generates YSQ 
{1, -1} generates (Z,+)
{4} is a generator for (Z7,+)

N.B.  F| and R90 is each a generator, but only the set of both generators generates a group.



Lagrange Theorem

Lagrange Theorem

If H is a subgroup of a finite group G, then the 
order of H divides the order of G. 

Corollary

If G is a finite group, a|G| = 1.

Proof: 
If a generates the subgroup H, then

a|G| = ak|H| = (a|H|)k = 1k = 1 .



Multiplication Modulo n

Let Zn-{0} = {1, 2, 3, ... n-1} 
Let  = multiplication mod n 

 1

1 1

n=2 n=3

 1 2

1 1 2

2 2 1

n=4
 1 2 3
1 1 2 3

2 2 0 2
3 3 2 1

n=5
 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

n=6
 1 2 3 4 5
1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

Z*n = { x | 1 ≤ x ≤ n and GCD(x,n) = 1 } is a group



Checking for Prime
Fermat’s (Little) Theorem 

If n is prime, and a ∈ Z*n , then
 an-1 = 1 (mod n)

Proof
If n is prime, (Z*n  = {1, 2, ... , n-1}, ×) is a group 
with order n-1.  The rest of the proof follows from 
Lagrange Theorem.

Application
To check if a number n is prime, pick any number 
a, if an-1 mod n is not 1, then it is not prime.                   



15-puzzle

Image Source: Fifteen puzzle, Wikipedia
Proof: A New Look at the Fifteen Puzzle, E.L. Spitznagel



3-cycles
To permute 3 blocks in a row cyclically, e.g.
(a b c) → (b c a)

a b c
x y

x a b
y c

x b c
y a

b c a
x y

→ → →

To permute any 3 blocks in the 15-puzzle
1. Move a, b, c to the first, second and third row
2. Move a, b, c to the extreme right column
3. Permute cyclically
4. Return a, b, c to original position, permuted

Every legal configuration can be obtained 
through a sequence of 3-cycle permutations.



Even Permutations
Going from 13-15-14 to 13-14-15 takes one 
transposition (odd permutation).

But the composition of 3-cycles generates only 
even permutation.  

Why? Every product of two transpositions can be 
written as a product of 3-cycles.  

(a, b)(b, c) = (a, c, b)
(a, b)(c, d) = (a, c, b)(b, d, c)



Proof of impossibility
Sketch of the Proof

All legal moves in the 15-puzzle are generated 
from 3-cycle permutations.

3-cycles generate A15 (the group of even 
permutation) which is a subgroup of S15, the 
group of all permutations of 15 objects. 

Going from 13-15-14 to 13-14-15 takes an odd 
permutation.  Therefore, no valid moves can 
achieve the 14-15 puzzle.



The Quintic Equation

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

−b ±
√

b2 − 4ac

2a



Puzzles



 Solution 
Group Theory in the Bedroom

Reference: Scientific American, 93(5)-395 

Klein Four-Group



Permutation Puzzles

The Rubik’s Cube The Hockeypuck Puzzle Masterball

Pyraminx Lights Out Megaminx



The End


