CPS 102: Discrete Mathematics
Quiz 1
Date: Monday October 4, 2010

NAME:

Prob $\#$.	Score	Max Score
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		100
9		10
10		
Total		10

Problem 1

Use a regular expression to describe the language accepted by the following deterministic finite automata (DFA).

Problem 2

Draw a DFA that accepts the language $\varepsilon+\left(a a b^{*} a\right)+\left(b b a^{*}\right)$.

Problem 3

Use a regular expression to describe the set of strings over the alphabet $\{0,1\}$ in which every 1 is immediately followed by a zero.

Problem 4

Draw a DFA that accepts the set of strings of 0's and 1's that contain at least one instance of three consecutive 0 's.

Problem 5

Prove that the set $\{01,01001,010010001,01001000100001, \ldots\}$ cannot be accepted by any DFA.

Problem 6

Show that the number of different languages over the alphabet $\Sigma=\{0,1\}$ that are accepted by deterministic finite automata with only two states is finite.

Problem 7

Prove by contradiction: There are infinitely many even numbers.

Problem 8

A rational number is a real number that can be expressed as the ratio of two integers. An irrational number is a real number that is not rational. Provide an indirect proof of the following statement, i.e., prove the contrapositive. If a and b are real numbers and $a \cdot b$ is an irrational number, then either a or b is irrational.

Problem 9
Prove by induction that

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} .
$$

Problem 10

Suppose that there are only two types of postage stamps, 4 -cent stamps and 5 -cent stamps. Prove that any amount of postage of 12 cents or greater can be made up out of 4 -cent and 5 -cent stamps. Hint: It is possible to prove this using strong induction over N.

