Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
 - Set-valued attributes not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are identical if they agree on all attributes

"Simplicity is a virtue!"

Example

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>name</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CID</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS116</td>
<td>Intro. to Database Systems</td>
</tr>
<tr>
<td>CPS130</td>
<td>Analysis of Algorithms</td>
</tr>
<tr>
<td>CPS114</td>
<td>Computer Networks</td>
</tr>
</tbody>
</table>

```
Evid
```

Ordering of rows doesn’t matter (even though the output is always in some order)

```
142
123
857
456
```

Example

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to type and objects of type in a programming language
Relational algebra

A language for querying relational databases based on operators:

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
 - Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection

- Input: a table \(R \)
- Notation: \(\sigma_p R \)
 - \(p \) is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as \(R \), but only rows of \(R \) that satisfy \(p \)

Selection example

- Students with GPA higher than 3.0
 \(\sigma_{GPA > 3.0} \text{ Student} \)

Projection

- Input: a table \(R \)
- Notation: \(\pi_L R \)
 - \(L \) is a list of columns in \(R \)
- Purpose: select columns to output
- Output: same rows, but only the columns in \(L \)

Projection example

- ID’s and names of all students
 \(\pi_{SID, name} \text{ Student} \)
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

π_{Student} Student

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>122</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Cross product

- Input: two tables R and S
- Notation: $R \times S$
- Purpose: pairs rows from two tables
- Output: for each row r in R and each row s in S, output a row rs (concatenation of r and s)

Cross product example

- $\text{Student} \times \text{Enroll}$

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS116</td>
</tr>
</tbody>
</table>

A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows)
- That means cross product is commutative, i.e., $R \times S = S \times R$ for any R and S

Derived operator: join

(A.k.a. “theta-join”)

- Input: two tables R and S
- Notation: $R \bowtie_p S$
 - p is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p
- Shorthand for $\sigma_p (R \times S)$

Join example

- Info about students, plus CID’s of their courses

$\text{Join} \quad \text{Student} \bowtie_p \text{Enroll} \quad \text{Student.SID} = \text{Enroll.SID}$

Use table_name.column_name syntax to disambiguate identically named columns from different input tables
Derived operator: natural join

- Input: two tables R and S
- Notation: $R \bowtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for $\pi_L(R \bowtie_p S)$, where
 - p equates all attributes common to R and S
 - L is the union of all attributes from R and S, with duplicate attributes removed

Natural join example

- Student \bowtie Enroll $= \pi_\{\text{ID}, \text{name}, \text{GPA}, \text{CID}\} (\text{Student} \bowtie \text{Enroll})$

Union

- Input: two tables R and S
- Notation: $R \cup S$
- R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with duplicate rows eliminated

Difference

- Input: two tables R and S
- Notation: $R - S$
- R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not found in S

Renaming

- Input: a table R
- Notation: $\rho_{A_1, A_2, \ldots} R$ or $\rho_{A_1, A_2, \ldots} R$
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as R
- Used to
 - Avoid confusion caused by identical column names
 - Create identical column names for natural joins
Renaming example

- SID's of students who take at least two courses

\[\pi_{\text{SID}}(\text{Enroll} \bowtie \pi_{\text{CID}}(\text{Enroll})) \]

Expression tree syntax:

- \(\pi_{\text{SID}} \)
- \(\pi_{\text{CID}} \)
- \(\bowtie \)
- \(\sigma_{\text{CID}1 \neq \text{CID}2} \)
- \(\rho_{\text{Enroll}(\text{SID1}, \text{CID1})} \)
- \(\rho_{\text{Enroll}(\text{SID2}, \text{CID2})} \)
- \(\text{Enroll} \)

Summary of core operators

- Selection: \(\sigma, R \)
- Projection: \(\pi_L, R \)
- Cross product: \(R \times S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Renaming: \(\rho_{A_1, A_2, ...} R \)
 - Does not really add "processing" power

Summary of derived operators

- Join: \(R \bowtie S \)
- Natural join: \(R \bowtie S \)
- Intersection: \(R \cap S \)
- Many more
 - Semijoin, anti-semijoin, quotient, ...

An exercise

- Names of students in Lisa’s classes

Writing a query bottom-up:

- Their names \(\pi_{\text{name}} \)
- Students in Lisa’s classes \(\pi_{\text{SID}} \)
- Lisa’s classes \(\pi_{\text{CID}} \)
- Who’s Lisa? \(\sigma_{\text{name} = “Lisa”} \)
- Enroll

Another exercise

- CID’s of the courses that Lisa is NOT taking

Writing a query top-down:

- All CID’s \(\pi_{\text{CID}} \)
- CID’s of the courses that Lisa IS taking \(\pi_{\text{CID}} \)
- Course
- Enroll
- \(\sigma_{\text{name} = “Lisa”} \)
- Student

A trickier exercise

- Who has the highest GPA?
 - Who does NOT have the highest GPA?
 - Whose GPA is lower than somebody else’s?

A deeper question: When (and why) is "-" needed?
Monotone operators

- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain "correct" when more rows are added to the input
- Formally, for a monotone operator \(\phi \):
 \[R \subseteq R' \implies \phi(R) \subseteq \phi(R') \text{ for any } R, R' \]

Classification of relational operators

- Selection: \(\sigma_p R \) - Monotone
- Projection: \(\pi_L R \) - Monotone
- Cross product: \(R \times S \) - Monotone
- Join: \(R \bowtie_p S \) - Monotone
- Natural join: \(R \bowtie S \) - Monotone
- Union: \(R \cup S \) - Monotone
- Difference: \(R - S \) - Monotone w.r.t. \(R \); non-monotone w.r.t. \(S \)
- Intersection: \(R \cap S \) - Monotone

Why is “−” needed for highest GPA?

- Composition of monotone operators produces a monotone query
 - Old output rows remain "correct" when more rows are added to the input
- Is highest-GPA query monotone?
 - No!
 - Current highest GPA is 4.1
 - Add another GPA 4.2
 - Old answer is invalidated
 - So it must use difference!

Why do we need core operator \(X \)?

- Difference
 - The only non-monotone operator
- Cross product
 - The only operator that adds columns
- Union
 - The only operator that allows you to add rows?
 - A more rigorous argument?
- Selection? Projection?
 - Homework problem 😊

Why is r.a. a good query language?

- Simple
 - A small set of core operators whose semantics are easy to grasp
- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators do look somewhat "procedural"
- Complete?
 - With respect to what?

Relational calculus

- \{ \(s.SID \mid s \in \text{Student} \wedge \neg(\exists t \in \text{Student} : s.GPA < t.GPA) \} \}
 - or
- \{ \(s.SID \mid s \in \text{Student} \wedge (\forall t \in \text{Student} : s.GPA \geq t.GPA) \} \}
- Relational algebra = "safe" relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa
- Example of an unsafe relational calculus query
 - \{ \(s.name \mid \neg(s \in \text{Student}) \} \}
 - Cannot evaluate this query just by looking at the database
Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation \textit{Parent}(parent, child), who are Bart's ancestors?
- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level
- Recursion is added to SQL nevertheless!