
1

Relational Database Design
Part II

CPS 116

Introduction to Database Systems

2

Announcements (Tue. Sep. 13)

Homework #1 due in one week
You should have started by now

Course project description available!
Choice of “standard” or “open”

Team of size 1-4, but 1- and 4-person teams need 
approval from me

Two milestones + demo/report

Milestone #1 due in one month, right after fall break

3

Database design steps: review

Understand the real-world domain being modeled

Specify it using a database design model (e.g., E/R)

Translate specification to the data model of DBMS 
(e.g., relational)

Create DBMS schema

Next: translating E/R design to relational schema

4

E/R model: review

Entity sets
Keys
Weak entity sets

Relationship sets
Attributes on relationships
Multiplicity
Roles
Binary versus N-ary relationships

• Modeling N-ary relationships with weak entity sets and binary 
relationships

ISA relationships

5

Translating entity sets

An entity set translates directly to a table
Attributes → columns

Key attributes → key columns

Students Courses
CID

title
Enroll

SID

name

grade

Student (SID, name) Course (CID, title)

6

Translating weak entity sets

Remember the “borrowed” key attributes

Watch out for attribute name conflicts

Building (building_name, year)

Rooms (building_name, room_number, capacity)

Seats (building_name, room_number, seat_number, left_or_right)

Rooms In Buildings
name

year

number

capacity

In

Seats
number

L/R?



2

7

Translating relationship sets

A relationship set translates to a table
Keys of connected entity sets → columns

Attributes of the relationship set (if any) → columns

Multiplicity of the relationship set determines the key of 
the table

Students Courses
CID

title
Enroll

SID

name

grade

Enroll (SID, CID, grade)

8

More examples

EnrollStudents Courses

TA’s

CID

title

SID

name
TID

name
Enroll (SID, CID, TID)

Mentor (mentor_SSN, protégé_SSN)

Persons Mentor

mentor

protégé

SSN

9

Translating double diamonds
Recall that a double-diamond relationship set connects a 
weak entity set to another entity set
No need to translate because the relationship is implicit in 
the weak entity set’s translation

Rooms In Buildings
name

year

number

capacity

In

Seats
number

L/R?

RoomInBuilding
(room_building_name, room_number,
building_name)

is subsumed by
Rooms (building_name, room_number, capacity)

10

Translating subclasses & ISA (approach 1)

Entity-in-all-superclasses approach (“E/R style”)
An entity is represented in the table for each subclass to which it 
belongs

A table includes only the attributes directly attached to the 
corresponding entity set, plus the inherited key

Students Courses
CID

title
Enroll

SID

name

office GradStudents

ISA Course (CID, title)

Student (SID, name)

Enroll (SID, CID)

GradStudent (SID, office)

h 444, “Apu”i
∈

h 142, “Bart”i

h 444, “D444”i ∈

11

Translating subclasses & ISA (approach 2)

Entity-in-most-specific-class approach (“OO style”)
An entity is only represented in one table (corresponding to the 
most specific entity set to which the entity belongs)

A table includes the attributes attached to the corresponding 
entity set, plus all inherited attributes

Students Courses
CID

title
Enroll

SID

name

office GradStudents

ISA Course (CID, title)

Student (SID, name)

Enroll (SID, CID)

GradStudent (SID, name, office)h 444, “Apu”, “D444”i ∈

h 142, “Bart”i ∈

12

Translating subclasses & ISA (approach 3)

All-entities-in-one-table approach (“NULL style”)
One relation for the root entity set, with all attributes found in the 
network of subclasses (plus a “type” attribute when needed)

Use a special NULL value in columns that are not relevant for a 
particular entity

Students Courses
CID

title
Enroll

SID

name

office GradStudents

ISA Course (CID, title)

Student (SID, name, office)

Enroll (SID, CID)

h 444, “Apu”, “D444”i
∈

h 142, “Bart”, NULLi



3

13

Comparison of three approaches
Entity-in-all-superclasses

Student (SID, name), GradStudent (SID, office)
Pro: 
Con:

Entity-in-most-specific-class
Student (SID, name), GradStudent (SID, name, office)
Pro:
Con:

All-entities-in-one-table
Student (SID, [type, ]name, office)
Pro:
Con:

All students are found in one table
Attributes of grad students are scattered in different tables

All attributes of grad students are found in one table
Students are scattered in different tables

Everything is in one table
Too many NULL’s; complicated if class hierarchy is complex

14

A complete example

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops
Train (number, engineer)
LocalTrain (number)
ExpressTrain (number)

Station (name, address)
LocalStation (name)
ExpressStation (name)

LocalTrainStop (local_train_number, time)

ExpressTrainStop (express_train_number, time)
LocalTrainStopsAtStation (local_train_number, time, station_name)

ExpressTrainStopsAtStation (express_train_number, time,
express_station_name)

merge

merge

15

Simplifications and refinements
Train (number, engineer), LocalTrain (number), ExpressTrain (number)
Station (name, address), LocalStation (name), ExpressStation (name)
LocalTrainStop (local_train_number, station_name, time)
ExpressTrainStop (express_train_number, express_station_name, time)

Eliminate LocalTrain table
Redundant: can be computed as 

πnumber (Train) − ExpressTrain
Why is redundancy bad?

Slightly harder to check that local_train_number is indeed 
a local train number

Eliminate LocalStation table
It can be computed as πnumber (Station) − ExpressStation

16

An alternative design
Train (number, engineer, type)
Station (name, address, type)
TrainStop (train_number, station_name, time)

Encode the type of train/station as a column rather 
than creating subclasses

Some constraints are no longer captured
Type must be either “local” or “express”

Express trains only stop at express stations

Fortunately, they can be expressed/declared explicitly as 
database constraints in SQL

Arguably a better design because it is simpler!

17

Design principles

KISS
Keep It Simple, Stupid

Avoid redundancy
Redundancy wastes space, complicates updates and 
deletes, promotes inconsistency

Capture essential constraints, but don’t introduce 
unnecessary restrictions

Use your common sense
Warning: mechanical translation procedures given in 
this lecture are no substitute for your own judgment


