Relational Database Design Theory

CPS 116
Introduction to Database Systems

Announcements (Thu. Sep. 15)

Motivation

- How do we tell if a design is bad, e.g., `StudentEnroll (SID, name, CID)`?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
 - Update, insertion, deletion anomalies
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R.
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y.

FD examples

Address ($street_address$, $city$, $state$, zip)
- $street_address$, $city$, $state$ \rightarrow zip
- zip \rightarrow $city$, $state$
- zip, $state$ \rightarrow zip?
 - This is a trivial FD.
 - Trivial FD: LHS \supseteq RHS.
- zip \rightarrow $state$, zip?
 - This is non-trivial, but not completely non-trivial.
 - Completely non-trivial FD: LHS \cap RHS = \emptyset.

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”.
- No proper subset of K satisfies the above condition.
 - That is, K is minimal.
Reasoning with FD’s

Given a relation R and a set of FD’s F

- Does another FD follow from F?
- Are some of the FD’s in F redundant (i.e., they follow from the others)?
- Is K a key of R?
- What are all the keys of R?

Attribute closure

- Given R, a set of FD’s F that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to F is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)
- Algorithm for computing the closure
 - Start with closure = Z
 - If $X \rightarrow Y$ is in F and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

$StudentGrade (SID, name, email, CID, grade)$

(Not a good design, and we will see why later)
Example of computing closure

- \(F \) includes:
 - \(SID \rightarrow \text{name, email} \)
 - \(\text{email} \rightarrow \text{SID} \)
 - \(\text{SID, CID} \rightarrow \text{grade} \)
- \(\{ \text{CID, email} \}^+ = ? \)
- \(\text{email} \rightarrow \text{SID} \)
 - Add \(\text{SID} \); closure is now \(\{ \text{CID, email, SID} \} \)
- \(\text{SID} \rightarrow \text{name, email} \)
 - Add \(\text{name, email} \); closure is now \(\{ \text{CID, email, SID, name} \} \)
- \(\text{SID, CID} \rightarrow \text{grade} \)
 - Add \(\text{grade} \); closure is now all the attributes in \(\text{StudentGrade} \)

Using attribute closure

Given a relation \(R \) and set of FD’s \(F \)

- Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Compute \(X^+ \) with respect to \(F \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follow from \(F \)

- Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(F \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

- Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

$$
\begin{array}{ccc}
X & Y & Z \\
\uparrow & \uparrow & \uparrow \\
1 & 2 & 3 \\
\ldots & \ldots & \ldots
\end{array}
$$

That b is always associated with a is recorded by multiple rows: redundancy, update/insertion/deletion anomalies

Example of redundancy

- **StudentGrade** (SID, name, email, CID, grade)
 - $SID \rightarrow$ name, email

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS118</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS110</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS114</td>
<td>C</td>
</tr>
</tbody>
</table>

Decomposition

- Eliminates redundancy
 - To get back to the original relation:
Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

Bad decomposition

- Association between CID and grade is lost
- Join returns more rows than the original relation

Lossless join decomposition

- Decompose relation R into relations S and T
 - \(\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T) \)
 - \(S = \pi_{\text{attrs}(S)}(R) \)
 - \(T = \pi_{\text{attrs}(T)}(R) \)

- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that \(R = S \bowtie T \)

- Any decomposition gives \(R \subseteq S \bowtie T \) (why?)
 - A lossy decomposition is one with \(R \subset S \bowtie T \)
Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

No way to tell which is the original relation

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from "key → other attributes"

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- $\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
 - BCNF violation: $\text{SID} \rightarrow \text{name, email}$
- $\text{Student} (\text{SID}, \text{name}, \text{email})$
- $\text{Grade} (\text{SID}, \text{CID}, \text{grade})$

Another example

- $\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
 - $\text{SID} \rightarrow \text{name, email}$
 - $\text{email} \rightarrow \text{SID}$
 - $\text{SID}, \text{CID} \rightarrow \text{grade}$
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:
 $R \subseteq \pi_{XY} (R) \bowtie \pi_{XZ} (R)$
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 $R \supseteq \pi_{XY} (R) \bowtie \pi_{XZ} (R)$
 - Proof makes use of the fact that $X \rightarrow Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s

BCNF = no redundancy?

- Student (SID, CID, $club$)
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?
 - BCNF?
 - Redundancies?
Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \bowtie Y$, where X and Y are sets of attributes in a relation R.
- $X \bowtie Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Must be in R too

MVD examples

Student (SID, CID, club)

- SID, $CID \bowtie club$
 - Trivial: LHS \cup RHS = all attributes of R
- SID, $CID \bowtie SID$
 - Trivial: LHS \supset RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation: If $X \bowtie Y$, then $X \bowtie \text{attr}(R) - X - Y$
- MVD augmentation: If $X \bowtie Y$ and $V \subseteq W$, then $XW \bowtie YV$
- MVD transitivity: If $X \bowtie Y$ and $Y \bowtie Z$, then $X \bowtie Z - Y$
- Replication (FD is MVD): If $X \rightarrow Y$, then $X \bowtie Y$
 - Try proving things using these!
- Coalescence: If $X \bowtie Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase

- Given a set of FD’s and MVD’s \(D \), does another dependency \(d \) (FD or MVD) follow from \(D \)?
- Procedure
 - Start with the hypothesis of \(d \), and treat them as “seed” tuples in a relation
 - Apply the given dependencies in \(D \) repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of \(d \), we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

- In \(R(A, B, C, D) \), does \(A \bowtie B \) and \(B \bowtie C \) imply that \(A \bowtie C \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \bowtie B)</td>
<td></td>
</tr>
<tr>
<td>(B \bowtie C)</td>
<td></td>
</tr>
<tr>
<td>(B \bowtie C)</td>
<td></td>
</tr>
</tbody>
</table>

Another proof by chase

- In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(c1 = c2)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(c1 = c2)</td>
</tr>
</tbody>
</table>

In general, both new tuples and new equalities may be generated
Counterexample by chase

- In \(R(A, B, C, D) \), does \(A \cup BC \) and \(CD \rightarrow B \) imply that \(A \rightarrow B \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b_1)</td>
</tr>
<tr>
<td>(b)</td>
<td>(c_1)</td>
</tr>
<tr>
<td>(c)</td>
<td>(d_1)</td>
</tr>
<tr>
<td>(e)</td>
<td>(a)</td>
</tr>
<tr>
<td>(f)</td>
<td>(b_2)</td>
</tr>
<tr>
<td>(g)</td>
<td>(c_2)</td>
</tr>
<tr>
<td>(h)</td>
<td>(d_1)</td>
</tr>
<tr>
<td>(i)</td>
<td>(e)</td>
</tr>
<tr>
<td>(j)</td>
<td>(f)</td>
</tr>
<tr>
<td>(k)</td>
<td>(g)</td>
</tr>
<tr>
<td>(l)</td>
<td>(h)</td>
</tr>
<tr>
<td>(m)</td>
<td>(i)</td>
</tr>
<tr>
<td>(n)</td>
<td>(j)</td>
</tr>
<tr>
<td>(o)</td>
<td>(k)</td>
</tr>
<tr>
<td>(p)</td>
<td>(l)</td>
</tr>
<tr>
<td>(q)</td>
<td>(m)</td>
</tr>
<tr>
<td>(r)</td>
<td>(n)</td>
</tr>
<tr>
<td>(s)</td>
<td>(o)</td>
</tr>
<tr>
<td>(t)</td>
<td>(p)</td>
</tr>
<tr>
<td>(u)</td>
<td>(q)</td>
</tr>
<tr>
<td>(v)</td>
<td>(r)</td>
</tr>
<tr>
<td>(w)</td>
<td>(s)</td>
</tr>
<tr>
<td>(x)</td>
<td>(t)</td>
</tr>
<tr>
<td>(y)</td>
<td>(u)</td>
</tr>
<tr>
<td>(z)</td>
<td>(v)</td>
</tr>
<tr>
<td>(\overline{a})</td>
<td>(\overline{b}_1)</td>
</tr>
<tr>
<td>(\overline{b})</td>
<td>(\overline{c}_1)</td>
</tr>
<tr>
<td>(\overline{c})</td>
<td>(\overline{d}_1)</td>
</tr>
<tr>
<td>(\overline{e})</td>
<td>(\overline{a})</td>
</tr>
<tr>
<td>(\overline{f})</td>
<td>(\overline{b}_2)</td>
</tr>
<tr>
<td>(\overline{g})</td>
<td>(\overline{c}_2)</td>
</tr>
<tr>
<td>(\overline{h})</td>
<td>(\overline{d}_1)</td>
</tr>
<tr>
<td>(\overline{i})</td>
<td>(\overline{e})</td>
</tr>
<tr>
<td>(\overline{j})</td>
<td>(\overline{f})</td>
</tr>
<tr>
<td>(\overline{k})</td>
<td>(\overline{g})</td>
</tr>
<tr>
<td>(\overline{l})</td>
<td>(\overline{h})</td>
</tr>
<tr>
<td>(\overline{m})</td>
<td>(\overline{i})</td>
</tr>
<tr>
<td>(\overline{n})</td>
<td>(\overline{j})</td>
</tr>
<tr>
<td>(\overline{o})</td>
<td>(\overline{k})</td>
</tr>
<tr>
<td>(\overline{p})</td>
<td>(\overline{l})</td>
</tr>
<tr>
<td>(\overline{q})</td>
<td>(\overline{m})</td>
</tr>
<tr>
<td>(\overline{r})</td>
<td>(\overline{n})</td>
</tr>
<tr>
<td>(\overline{s})</td>
<td>(\overline{o})</td>
</tr>
<tr>
<td>(\overline{t})</td>
<td>(\overline{p})</td>
</tr>
<tr>
<td>(\overline{u})</td>
<td>(\overline{q})</td>
</tr>
<tr>
<td>(\overline{v})</td>
<td>(\overline{r})</td>
</tr>
<tr>
<td>(\overline{w})</td>
<td>(\overline{s})</td>
</tr>
<tr>
<td>(\overline{x})</td>
<td>(\overline{t})</td>
</tr>
<tr>
<td>(\overline{y})</td>
<td>(\overline{u})</td>
</tr>
<tr>
<td>(\overline{z})</td>
<td>(\overline{v})</td>
</tr>
</tbody>
</table>

4NF

- A relation \(R \) is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD \(X \supset Y \) in \(R \), \(X \) is a superkey
 - That is, all FD’s and MVD’s follow from “key → other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD \(X \supset Y \) in \(R \) where \(X \) is not a superkey
- Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \) (\(Z \) contains attributes not in \(X \) or \(Y \))
- Repeat until all relations are in 4NF

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless
4NF decomposition example

Student (SID, CID, club)

4NF violation: SID \(\not\subseteq\) CID

Enroll (SID, CID)

- SID 142 CPS116 ballet
- SID 142 CPS116 sumo
- SID 142 CPS114 ballet
- SID 142 CPS114 sumo
- SID 123 CPS116 chess
- SID 123 CPS116 golf
- ...

Join (SID, club)

- SID club ballet
- SID club sumo
- SID club chess
- SID club golf
- ...

Summary

- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!
- Other normal forms
 - 3NF: More relaxed than BCNF, will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic