Relational Database Design Theory

CPS 116
Introduction to Database Systems

Announcements (Thu. Sep. 15)

- Homework #1 due next Tuesday
 - Web-based submission preferred over hard copies
- Watch your email for announcements of “refreshes” of /home/dbcourse/ on your virtual machine

Motivation

- How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
 - Update, insertion, deletion anomalies
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>CPS114</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>CPS116</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>CPS130</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

\[
\begin{array}{ccc}
X & Y & Z \\
\text{at} & \text{b} & \text{c} \\
\text{at} & \text{b} & ?
\end{array}
\]

Must be b

Could be anything

FD examples

Address (street_address, city, state, zip)

- $street_address, city, state \rightarrow zip$
- $zip \rightarrow city, state$
- $zip, state \rightarrow zip$?
 - This is a trivial FD
 - Trivial FD: LHS \supseteq RHS
- $zip \rightarrow state, zip$?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}
- Does another FD follow from \mathcal{F}?
 - Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD's \mathcal{F} that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

`StudentGrade (SID, name, email, CID, grade)`
- $SID \rightarrow$ name, email
- $email \rightarrow$ SID
- $SID, CID \rightarrow$ grade
(Not a good design, and we will see why later)

Example of computing closure

\mathcal{F} includes:
- $SID \rightarrow$ name, email
- $email \rightarrow$ SID
- $SID, CID \rightarrow$ grade
- $\{ CID, email \}^+ = \ ?$
- $email \rightarrow$ SID
 - Add SID; closure is now $\{ CID, email, SID \}$
- $SID \rightarrow$ name, email
 - Add name, email; closure is now $\{ CID, email, SID, name \}$
- $SID, CID \rightarrow$ grade
 - Add grade; closure is now all the attributes in `StudentGrade`

Using attribute closure

- Given a relation R and set of FD's \mathcal{F}
 - Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from \mathcal{F}
 - Is K a key of R?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD's

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
- Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X.

$$
\begin{array}{ccc}
X & Y & Z \\
\text{at} & \beta & x_1 \\
\text{at} & \beta & x_2 \\
\cdots & \cdots & \cdots \\
\end{array}
$$

That b is always associated with a is recorded by multiple rows: redundancy, update/insertion/deletion anomaly.

Example of redundancy

- **StudentGrade (SID, name, email, CID, grade)**
- **SID → name, email**

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B-</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS116</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS114</td>
<td>C</td>
</tr>
</tbody>
</table>

Decomposition

- Eliminates redundancy
- To get back to the original relation:

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B-</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS116</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS114</td>
<td>C</td>
</tr>
</tbody>
</table>

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now **SID** is stored twice!

Bad decomposition

- Association between **CID** and **grade** is lost
- Join returns more rows than the original relation

Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attr}(R) = \text{attr}(S) \cup \text{attr}(T)$
 - $S = \pi_{\text{attr}(S)}(R)$
 - $T = \pi_{\text{attr}(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
- Or, the ability to distinguish different original relations

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from "key \rightarrow other attributes"

 When to decompose
 - As long as some relation is not in BCNF
 - How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- StudentGrade (SID, name, email, CID, grade)
 - BCNF violation: $SID \rightarrow$ name, email
- Student (SID, name, email)
 - BCNF
- Grade (SID, CID, grade)
 - BCNF

Another example

- StudentGrade (SID, name, email, CID, grade)
 - BCNF violation: email \rightarrow SID
- StudentID (email, SID)
 - BCNF
- StudentGrade' (email, name, CID, grade)
 - BCNF violation: email \rightarrow name
- StudentName (email, name)
 - BCNF
- Grade (email, CID, grade)
 - BCNF
Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:

- Anything we project always comes back in the join:
 \[R \subseteq \pi_X Y (R) \pi_X Z (R) \]
- Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_X Y (R) \pi_X Z (R) \]
- Proof makes use of the fact that \(X \rightarrow Y \)

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
 - BCNF: schema in this normal form has no redundancy due to FD’s

BCNF = no redundancy?

- Student (SID, CID, club)
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?
 - None
 - BCNF?
 - Yes
 - Redundancies?
 - Tons!

Multivalued dependencies

- A multivalued dependency (MVD) has the form \(X \vartriangledown Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \)
- \(X \vartriangledown Y \) means that whenever two rows in \(R \) agree on all the attributes of \(X \), then we can swap their \(Y \) components and get two new rows that are also in \(R \)

MVD examples

- Student (SID, CID, club)
 - \(SID \vartriangledown CID \)
 - \(SID \vartriangledown club \)
 - Intuition: given \(SID, CID \) and club are “independent”
 - \(SID, CID \vartriangledown club \)
 - Trivial: LHS \(\cup \) RHS = all attributes of \(R \)
 - \(SID, CID \vartriangledown SID \)
 - Trivial: LHS \(\supseteq \) RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 If \(X \vartriangledown Y \), then \(X \vartriangledown \text{attrs}(R) - X - Y \)
- MVD augmentation:
 If \(X \vartriangledown Y \) and \(V \subseteq W \), then \(X W \vartriangledown Y V \)
- MVD transitivity:
 If \(X \vartriangledown Y \) and \(Y \vartriangledown Z \), then \(X \vartriangledown Z \)
- Replication (FD is MVD):
 If \(X \rightarrow Y \), then \(X \vartriangledown Y \)
 - Try proving things using these!
- Coalescence:
 If \(X \vartriangledown Y \) and \(Z \subseteq Y \) and there is some \(W \) disjoint from \(Y \) such that \(W \rightarrow Z \), then \(X \rightarrow Z \)
An elegant solution: chase

- Given a set of FD’s and MVD’s D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the hypothesis of d, and treat them as “seed” tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?
- Have
 - A B C D
 - a 1 1 1
 - b 2 2 2
- Need
 - $A \rightarrow B$
 - $A \rightarrow C$

- Counterexample by chase

- In $R(A, B, C, D)$, does $A \triangledown B$ and $B \triangledown C$ imply that $A \triangledown C$?
- Have
 - A B C D
 - a 1 1 1
 - b 2 2 2
 - c 1 2 2
 - Need
 - $A \triangledown B$
 - $B \triangledown C$

4NF

- A relation R is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD $X \triangledown Y$ in R, X is a superkey
 - That is, all FD’s and MVD’s follow from “key → other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)
- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \triangledown Y$ in R where X is not a superkey
 - Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y)
 - Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless
4NF decomposition example

Student (SID, CID, club)
4NF violation: SID ⊗ CID

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS116</td>
<td>sumo</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>chess</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
<td>ballet</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>ballet</td>
</tr>
<tr>
<td>123</td>
<td>chess</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Enroll (SID, CID)
4NF

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Join (SID, club)
4NF

<table>
<thead>
<tr>
<th>SID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>chess</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Summary
- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!
- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic