SQL: Recursion

CPS 116
Introduction to Database Systems

Announcements (Tue. Sep. 27)

- Homework #2 due in one week
 - Start now, if you haven’t already
- Homework #1 sample solution was handed out
 - Only available in hard copies
- Midterm next Thursday in class
 - Open-book, open-notes
 - Sample midterm (from last offering of 116) available

Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.
    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```
 - But you cannot find all his ancestors with a single query

- SQL3 introduces recursion
 - WITH clause
 - Implemented in PostgreSQL (common table expressions)

Ancestor query in SQL3

```sql
WITH RECURSIVE Ancestor(anc, desc) AS
    ((SELECT parent, child FROM Parent)
    UNION
    (SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
```

Fixed point of a function

- If f: T → T is a function from a type T to itself, a fixed point of f is a value x such that f(x) = x
- Example: What is the fixed point of f(x) = x / 2?
 - 0, because f(0) = 0 / 2 = 0

To compute a fixed point of f

```
- Start with a "seed": x ← x₀
- Compute f(x)
  - If f(x) = x, stop; x is fixed point of f
  - Otherwise, x ← f(x); repeat
```

Example: compute the fixed point of f(x) = x / 2

- With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0

A motivating example

```
<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
<tr>
<td>Bart</td>
<td>Lisa</td>
</tr>
</tbody>
</table>
```

- Example: find Bart’s ancestors
- “Ancestor” has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor

How do we compute such a recursive query?
Fixed point of a query

- A query q is just a function that maps an input table to an output table, so a fixed point of q is a table T such that $q(T) = T$
- To compute fixed point of q
 - Start with an empty table: $T \leftarrow \emptyset$
 - Evaluate q over T
 - If the result is identical to T, stop; T is a fixed point
 - Otherwise, let T be the new result; repeat
 - Starting from \emptyset produces the unique minimal fixed point (assuming q is monotone)

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
- We stop when no new facts can be proven

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated $Ancestor$ rows with $Parent$
 - For non-linear recursion, need to join newly generated $Ancestor$ rows with all existing $Ancestor$ rows
- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps
 - More work: e.g., $a \rightarrow d$ has two different derivations

Finding ancestors

```sql
WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
 UNION
(SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc))
```

- Think of it as $Ancestor = q(Ancestor)$

Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear:
  ```sql
  WITH RECURSIVE Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent)
   UNION
   (SELECT anc, child
    FROM Ancestor, Parent
    WHERE desc = parent))
  ```

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated $Ancestor$ rows with $Parent$
 - For non-linear recursion, need to join newly generated $Ancestor$ rows with all existing $Ancestor$ rows
- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps
 - More work: e.g., $a \rightarrow d$ has two different derivations

Mutual recursion example

- Table $Natural(n)$ contains 1, 2, ..., 100
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an odd number
  ```sql
  WITH RECURSIVE Even(n) AS
  ((SELECT n FROM Natural
   WHERE n = ANY(SELECT n+1 FROM Odd)),
   RECURSIVE Odd(n) AS
   ((SELECT n FROM Natural WHERE n = 1)
    UNION
    (SELECT n FROM Natural
     WHERE n = ANY(SELECT n+1 FROM Even)))
  ```
Operational semantics of WITH

- WITH RECURSIVE \(R_1 \) AS \(Q_1 \), ..., RECURSIVE \(R_n \) AS \(Q_n \)
- \(Q_i \) may refer to \(R_1, \ldots, R_n \)

Operational semantics

1. \(R_i \leftarrow \emptyset \), ..., \(R_n \leftarrow \emptyset \)
2. Evaluate \(Q_1, \ldots, Q_n \) using the current contents of \(R_1, \ldots, R_n \):
 - \(R_i^{\text{new}} \leftarrow Q_i \), ..., \(R_n^{\text{new}} \leftarrow Q_n \)
3. If \(R_i^{\text{new}} \neq R_i \) for any \(i \):
 1. \(R_i \leftarrow R_i^{\text{new}}, \ldots, R_n \leftarrow R_n^{\text{new}} \)
 2. Go to 2.
4. Compute \(Q \) using the current contents of \(R_1, \ldots, R_n \) and output the result

Computing mutual recursion

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
((SELECT n FROM Natural
WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

- Even = \(\emptyset \), Odd = \(\emptyset \)
- Even = \(\emptyset \), Odd = \(\{1\} \)
- Even = \(\{2\} \), Odd = \(\{1, 3\} \)
- Even = \(\{2, 4\} \), Odd = \(\{1, 3, 5\} \)
- ...

Fixed points are not unique

WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

- There may be many other fixed points
- But if \(q \) is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \(\emptyset \):
 - Thus the unique minimal fixed point is the “natural” answer to the query

Mixing negation with recursion

- If \(q \) is non-monotone
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—so which one is the right answer?
- Example: reward students with GPA higher than 3.9
 - Those not on the Dean’s List should get a scholarship
 - Those without scholarships should be on the Dean’s List
 - WITH RECURSIVE Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
 RECURSIVE DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Fixed-point iteration does not converge

WITH RECURSIVE Scholarship(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),
RECURSIVE DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

Multiple minimal fixed points

WITH RECURSIVE Scholarship(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),
RECURSIVE DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))
Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WITH
 - A directed edge $R \rightarrow S$ if R is defined in terms of S
 - Label the directed edge "−" if the query defining R is not monotone with respect to S
- Legal SQL3 recursion: no cycle containing a "−" edge
- Called stratified negation
- Bad mix: a cycle with at least one edge labeled "−"

Stratified negation example

Find pairs of persons with no common ancestors

```sql
WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)),
 Person(person) AS
 ((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),
 NoCommonAnc(person1, person2) AS
 ((SELECT p1.person, p2.person
 FROM Person p1, Person p2
 WHERE p1.person <> p2.person)
 EXCEPT
 (SELECT a1.desc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.anc = a2.anc))
SELECT * FROM NoCommonAnc;
```

Evaluating stratified negation

- The stratum of a node R is the maximum number of "−" edges on any path from R in the dependency graph
 - Ancestor: stratum 0
 - Person: stratum 0
 - NoCommonAnc: stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: Ancestor and Person
 - Stratum 1: NoCommonAnc
 - Intuitively, there is no negation within each stratum

Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)