Query Optimization

CPS 116
Introduction to Database Systems

Announcements (Thu. Dec. 1)

- Extra credit (20 points) due next Tuesday
- Homework #4 deadline extended—due next Thursday (Dec. 8)
- Sign up (via email) for a 30-minute slot in the project demo period, Dec. 12-14
 - Two “public” demo slots available right after final exam
- Final exam 2-4pm Dec. 13
 - Open book, open notes
 - Focus on the second half of the course
 - Sample final available

Query optimization

- One logical plan! “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
- Join reordering: \(\land \) and \(\lor \) are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert \(\sigma_p \land \) to/from \(\sigma_p \lor \): \(\sigma_p (R \land S) = R \lor \sigma_p S \)
- Merge/split \(\sigma_p \): \(\sigma_{p_1} (\sigma_{p_2} R) = \sigma_{p_1 \lor p_2} R \)
- Merge/split \(\pi \)'s: \(\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1 \mu L_2} R \)
- Push down/pull up \(\sigma \):
 \(\sigma_{p \land \sigma_{p'}} R = (\sigma_{p'} R) \land \sigma_{p \land \sigma_{p'}} S \)
 - \(p \) is a predicate involving only R columns
 - \(p' \) is a predicate involving only S columns
 - \(p \) and \(p' \) are predicates involving both R and S columns
- Push down \(\pi \): \(\pi_{L_1} (\sigma_p R) = \pi_{L_1} (\sigma_{p \land \sigma_p} (\sigma_{p_1} R)) \)
 - \(L' \) is the set of columns referenced by \(p \) that are not in \(L \)
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why?
 - Why not?
- Join smaller relations first, and avoid cross product
 - Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
Dealing with correlated subqueries

- `SELECT CID FROM Course`
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- `SELECT CID`
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';

“Magic” decorrelation

- `SELECT CID FROM Course`
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- `CREATE VIEW Supp_Course AS`
 SELECT * FROM Course WHERE title LIKE 'CPS%';

- `CREATE VIEW Magic AS`
 SELECT DISTINCT CID FROM Supp_Course;

- `CREATE VIEW DS AS`
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));

- `SELECT Supp_Course.CID FROM Supp_Course, DS`
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones

- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

- We have: cost estimation for each operator
 - Example: $\text{SORT}(CID)$ takes $2 \in B(input)$
 - But what is $B(input)$?
- We need: size of intermediate results

Selections with equality predicates

- Q: $\sigma_A = v R$
 - Suppose the following information is available
 - Size of R: $|R|$
 - Number of distinct A values in R: $|\pi_A R|$
 - Assumptions
 - Values of A are uniformly distributed in R
 - Values of v in Q are uniformly distributed over all RA values
 - $|Q| \leq |R| / |\pi_A R|$
 - Selectivity factor of $(A = v)$ is $1 / |\pi_A R|$

Conjunctive predicates

- Q: $\sigma_A = a$ and $B = v R$
 - Additional assumptions
 - $(A = a)$ and $(B = v)$ are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: A is the key
 - $|Q| \leq |R| \cdot ((|\pi_A R| \cdot |\pi_B R|))$
 - Reduce total size by all selectivity factors
Negated and disjunctive predicates

- $\sigma_{A \neq v} R$
 - $|Q| \cdot 1 - 1 / \pi_A R$
 - Selectivity factor of p is $1 - \text{selectivity factor of } p$

- $\sigma_{A = u \lor B = v} R$
 - $|Q| \cdot (1 / \pi_A R + 1 / \pi_B R)$
 - Intuition: $(A = u)$ or $(B = v)$ is equivalent to $(A = u) \land (B = v)$

Range predicates

- $Q: \sigma_{A > v} R$
 - Not enough information!
 - Just pick, say, $|Q| \cdot 1/3$
 - With more information
 - Largest RA value: high(RA)
 - Smallest RA value: low(RA)
 - $|Q| \cdot (\text{high}(RA) - v) / (\text{high}(RA) - \text{low}(RA))$
 - In practice: sometimes the second highest and lowest are used instead

Two-way equi-join

- $Q: R(A, B) \bowtie S(A, C)$
 - Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \cdot |\pi_A S|$ then $\pi_A R \bowtie \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins
 - $|Q| \cdot |\pi_A R| \\ |\pi_A S| / \max(|\pi_A R|, |\pi_A S|)$
 - Selectivity factor of $RA = S$ is $1 / \max(|\pi_A R|, |\pi_A S|)$
Multiway equi-join

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- What is the number of distinct C values in the join of R and S?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A (R \bowtie S) = \pi_A R$
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont’d)

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- Start with the product of relation sizes
 - $|R| \times |S| \times |T|$
- Reduce the total size by the selectivity factor of each join predicate
 - $R \cdot B = S \cdot B: 1/\max(|\pi_B R|, |\pi_B S|)$
 - $S \cdot C = T \cdot C: 1/\max(|\pi_C S|, |\pi_C T|)$
 - $|Q| \leq (|R| \times |S| \times |T|)/(\max(|\pi_B R|, |\pi_B S|) \times \max(|\pi_C S|, |\pi_C T|))$

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms
Search for the best plan

- Huge search space
- "Bushy" plan example:

 Just considering different join orders, there are \((2n - 2)! / (n - 1)!\) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n\)
 - 30240 for \(n = 6\)
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n\)?
 - Significantly fewer, but still lots—

A greedy algorithm

- \(S_1, \ldots, S_n\)
 - Say selections have been pushed down; i.e., \(S_i = \sigma_{S_i} R_i\)
- Start with the pair \(S_i, S_j\) with the smallest estimated size for \(S_i \bowtie S_j\)
- Repeat until no relation is left:
 - Pick \(S_k\) from the remaining relations such that the join of \(S_k\) and the current result yields an intermediate result of the smallest size
 - Minimize expected size
 - Pick most efficient join method
 - Remaining relations to be joined
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass \(k \): Find the best \(k \)-table plans (for each combination of \(k \) tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \)
 - Interesting orders produced by \(X \) subsume those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - At most one for each interesting order
Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach