CPS216: Data-Intensive Computing Systems

Data Access from Disks

Shivnath Babu
Outline

• Disks
• Data access from disks
• Software-based optimizations
 – Prefetching blocks
 – Choosing the right block size
Focus on: “Typical Disk”

Head assembly

Terms: Platter, Head, Cylinder, Track
Sector (physical), Block (logical), Gap
Block Address:

- Physical Device
- Cylinder #
- Surface #
- Start sector #
Disk Access Time (Latency)

I want block X

?

block X in memory
Access Time =
Seek Time +
Rotational Delay +
Transfer Time +
Other
Seek Time

Average value: 10 ms \rightarrow 40 ms
Rotational Delay

Head Here

Block I Want
Average Rotational Delay

$R = \frac{1}{2}$ revolution

Example: $R = 8.33$ ms (3600 RPM)
Transfer Rate: t

- t: 1 → 100 MB/second
- transfer time: block size
 t
Other Delays

- CPU time to issue I/O
- Contention for controller
- Contention for bus, memory

“Typical” Value: 0
• So far: Random Block Access
• What about: Reading “Next” block?
If we do things right …

Time to get next block = Block Size + Negligible time

- skip gap
- switch track
- once in a while, next cylinder
Rule of Thumb

Random I/O: Expensive
Sequential I/O: Much less

• Ex: 1 KB Block
 » Random I/O: ~ 20 ms.
 » Sequential I/O: ~ 1 ms.
Cost for **Writing** similar to **Reading**

.... unless we want to verify!
To Modify Block:

(a) Read Block
(b) Modify in Memory
(c) Write Block
[(d) Verify?]
A Synthetic Example

- 3.5 in diameter disk
- 3600 RPM
- 1 surface
- 16 MB usable capacity (16 X 2^{20})
- 128 cylinders
- seek time: average = 25 ms.

 adjacent cylinders = 5 ms.
1 KB blocks = sectors
10% overhead between sectors
capacity = 16 MB = \((2^{20})16 = 2^{24} \) bytes
cylinders = 128 = \(2^7 \)
bytes/cyl = \(2^{24}/2^7 = 2^{17} = 128 \) KB
blocks/cyl = 128 KB / 1 KB = 128
3600 RPM → 60 revolutions / sec
→ 1 rev. = 16.66 msec.

One track:

Time over useful data: \((16.66)(0.9) = 14.99 \text{ ms}\).
Time over gaps: \((16.66)(0.1) = 1.66 \text{ ms}\).
Transfer time 1 block = \(14.99/128 = 0.117 \text{ ms}\).
Trans. time 1 block + gap = \(16.66/128 = 0.13 \text{ ms}\).
Burst Bandwidth

1 KB in 0.117 ms.

BB = 1/0.117 = 8.54 KB/ms.

or

BB = 8.54 KB/ms \times 1000 \text{ ms/1 sec} \times 1 \text{ MB/1024 KB}
= 8540/1024 = 8.33 \text{ MB/sec}
Sustained bandwidth (over track)
128 KB in 16.66 ms.

SB = 128/16.66 = 7.68 KB/ms

or

SB = 7.68 x 1000/1024 = 7.50 MB/sec.
$T_1 = \text{Time to read one random block}$

$T_1 = \text{seek} + \text{rotational delay} + \text{TT}$

$= 25 + (16.66/2) + .117 = 33.45 \text{ ms.}$
A Back of Envelope Calculation

• Suppose it takes 25 ms to read one 1 KB block
• 10 tuples of size 100 bytes each fit in 1 block
• How much time will it take to read a table containing 1 Million records (say, Amazon’s customer database)?
Suppose DBMS deals with 4 KB blocks

\[T_4 = 25 + \left(\frac{16.66}{2} \right) + (0.117) \times 1 + (0.130) \times 3 = 33.83 \text{ ms} \]

[Compare to \(T_1 = 33.45 \text{ ms} \)]
$T_T = \text{Time to read a full track}$

(start at any block)

$T_T = 25 + \left(\frac{0.130}{2}\right) + 16.66^* = 41.73 \text{ ms}$

\[\text{to get to first block}\]

\[\text{* Actually, a bit less; do not have to read last gap.}\]
Outline

• Disks
• Data access from disks
• Software-based optimizations
 – Prefetching blocks
 – Choosing the right block size
Software-based Optimizations (in Disk controller, OS, or DBMS Buffer Manager)

• Prefetching blocks
• Choosing the right block size
• Some others covered in Garcia-Molina et al. book
Prefetching Blocks

• Exploits locality of access
 – Ex: relation scan
• Improves performance by hiding access latency
• Needs extra buffer space
 – Double buffering
Block Size Selection?

- Big Block \rightarrow Amortize I/O Cost

Unfortunately...

- Big Block \Rightarrow Read in more useless stuff!
Tradeoffs in Choosing Block Size

- Small relations?
- Update-heavy workload?
- Difficult to use blocks larger than track
- Multiple block sizes