CPS216: Data-Intensive Computing Systems

Query Execution (Sort and Join operators) Shivnath Babu

Roadmap

- A simple operator: Nested Loop Join
- Preliminaries
- Cost model
- Clustering
- Operator classes
- Operator implementation (with examples from joins)
- Scan-based
- Sort-based
- Using existing indexes
- Hash-based
- Buffer Management
- Parallel Processing

Nested Loop Join (NLJ)

R1

B	C
a	10
a	20
b	10
d	30

\bowtie| C | D |
| :---: | :---: |
| 10 | cat |
| 40 | dog |
| 15 | bat |
| 20 | rat |

R2

- NLJ (conceptually)
for each $r \in R 1$ do
for each $s \in R 2$ do if r.C = s.C then output r,s pair

Nested Loop Join (contd.)

- Tuple-based
- Block-based
- Asymmetric

Implementing Operators

- Basic algorithm
- Scan-based (e.g., NLJ)
- Sort-based
- Using existing indexes
- Hash-based (building an index on the fly)
- Memory management
- Tradeoff between memory and \#IOs
- Parallel processing

Roadmap

- A simple operator: Nested Loop Join
- Preliminaries
- Cost model
- Clustering
- Operator classes
- Operator implementation (with examples from joins)
- Scan-based
- Sort-based
- Using existing indexes
- Hash-based
- Buffer Management
- Parallel Processing

Operator Cost Model

- Simplest: Count \# of disk blocks read and written during operator execution
- Extends to query plans
- Cost of query plan = Sum of operator costs
- Caution: Ignoring CPU costs

Assumptions

- Single-processor-single-disk machine - Will consider parallelism later
- Ignore cost of writing out result
- Output size is independent of operator implementation
- Ignore \# accesses to index blocks

Parameters used in Cost Model

$B(R)=$ \# blocks storing R tuples
$T(R)=$ \# tuples in R
$\mathrm{V}(\mathrm{R}, \mathrm{A})=$ \# distinct values of attr A in R
$\mathrm{M}=$ \# memory blocks available

Roadmap

- A simple operator: Nested Loop Join
- Preliminaries
- Cost model
- Clustering
- Operator classes
- Operator implementation (with examples from joins)
- Scan-based
- Sort-based
- Using existing indexes
- Hash-based
- Buffer Management
- Parallel Processing

Notions of clustering

- Clustered file organization

> R1 R2 S1 S2 R3 R4 S3 S4

- Clustered relation
R1 R2 R3 R4 R5 R5 R7 R8
- Clustering index

Clustering Index

Tuples with a given value of the search key packed in as few blocks as possible

Examples

$T(R)=10,000$
$B(R)=200$
If R is clustered, then \# R tuples per block = $10,000 / 200=50$
Let $\mathrm{V}(\mathrm{R}, \mathrm{A})=40$
\rightarrow If I is a clustering index on R.A, then \# IOs to access $\sigma_{R . A=" a "}(R)=250 / 50=5$
\rightarrow If I is a non-clustering index on R.A, then \# IOs to access $\sigma_{R . A}=$ "a" $(R)=250(>B(R))$

Operator Classes

Roadmap

- A simple operator: Nested Loop Join
- Preliminaries
- Cost model
- Clustering
- Operator classes
- Operator implementation (with examples from joins)
- Scan-based
- Sort-based
- Using existing indexes
- Hash-based
- Buffer Management
- Parallel Processing

Implementing Tuple-at-a-time Operators

- One pass algorithm:
- Scan
- Process tuples one by one
- Write output
- Cost = B(R)
- Remember: Cost = \# IOs, and we ignore the cost to write output

Implementing a Full-Relation Operator, Ex: Sort

- Suppose $T(R) \times$ tupleSize $(R)<=M \times|B(R)|$
- Read R completely into memory
- Sort
- Write output
- Cost = B(R)

Implementing a Full-Relation

 Operator, Ex: Sort- Suppose R won't fit within M blocks
- Consider a two-pass algorithm for Sort; generalizes to a multi-pass algorithm
- Read R into memory in M-sized chunks
- Sort each chunk in memory and write out to disk as a sorted sublist
- Merge all sorted sublists
- Write output

Two-phase Sort: Phase 1

Suppose $B(R)=1000, R$ is clustered, and $M=100$

1
2
3
4
5
\vdots
\vdots
999
1000
R

1	".'.'	96
2		97
3		98
4		99
5		100
	Mem	

1	$\cdots \cdots$	100
101	$\cdots \cdots$	200
201	$\cdots \cdots$	300

801	\cdots
	900
901	$\cdots \cdots$
	$\mathbf{1 0 0 0}$

Two-phase Sort: Phase 2

Memory
Sorted R

Analysis of Two-Phase Sort

- Cost $=3 \times B(R)$ if R is clustered, $=B(R)+2 B\left(R^{\prime}\right)$ otherwise
- Memory requirement $M>=B(R)^{1 / 2}$

Duplicate Elimination

- Suppose $B(R)<=M$ and R is clustered
- Use an in-memory index structure
- Cost = B(R)
- Can we do with less memory?
- $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}$
- Aggregation is similar to duplicate elimination

Duplicate Elimination Based on Sorting

- Sort, then eliminate duplicates
- Cost = Cost of sorting $+\mathrm{B}(\mathrm{R})$
- Can we reduce cost?
- Eliminate duplicates during the merge phase

Back to Nested Loop Join (NLJ)

R

B	C
a	10
a	20
b	10
d	30

C	D
10	cat
40	dog
15	bat
20	rat

S

- NLJ (conceptually) for each $r \in R$ do for each $s \in S$ do if r.C = s.C then output r,s pair

Analysis of Tuple-based NLJ

- Cost with R as outer $=T(R)+T(R) \times T(S)$
- Cost with S as outer $=T(S)+T(R) \times T(S)$
- $M>=2$

Block-based NLJ

- Suppose R is outer
- Loop: Get the next M-1 R blocks into memory
- Join these with each block of S
- $B(R)+(B(R) / M-1) \times B(S)$
- What if S is outer?
$-B(S)+(B(S) / M-1) \times B(R)$

Let us work out an NLJ Example

- Relations are not clustered
- $T(R 1)=10,000 \quad T(R 2)=5,000$ 10 tuples/block for R1; and for R2 M = 101 blocks

Tuple-based NLJ Cost: for each R1 tuple: [Read tuple + Read R2] Total $=10,000[1+5000]=50,010,000 \mathrm{IOs}$

Can we do better when R,S are not clustered?

Use our memory
(1) Read 100 blocks worth of R1 tuples
(2) Read all of R2 (1 block at a time) + join
(3) Repeat until done

Cost: for each R1 chunk:

Read chunk: 1000 IOs Read R2: 5000 IOs Total/chunk = 6000

> Total $=\frac{10,000}{1,000} \times 6000=60,000 \mathrm{IOs}$ $[\mathrm{Vs} 50,010,.000!]$

Can we do better?

- Reverse join order: R2 \bowtie R1

Total $=\frac{5000}{1000} \times(1000+10,000)=$

$$
\begin{aligned}
5 \times 11,000= & 55,000 \mathrm{IOs} \\
& {[\mathrm{Vs.} 60,000] }
\end{aligned}
$$

Example contd. NLJ R2 \bowtie R1

- Now suppose relations are clustered

Cost
For each R2 chunk:
Read chunk: 100 IOs
Read R1: 1000 IOs
Total/chunk =1,100
Total $=5$ chunks x 1,100 = 5,500 IOs
[Vs. 55,000]

Joins with Sorting

- Sort-Merge Join (conceptually)
(1) if R1 and R2 not sorted, sort them
(2) $\mathrm{i} \leftarrow 1$; $\mathrm{j} \leftarrow 1$;

While ($\mathrm{i} \leq \mathrm{T}(\mathrm{R} 1)$) $\wedge(\mathrm{j} \leq \mathrm{T}(\mathrm{R} 2))$ do
if R1 $\{\mathrm{i}\} . \mathrm{C}=\mathrm{R} 2\{\mathrm{j}\} . \mathrm{C}$ then OutputTuples
else if R1 $\{\mathrm{i}\} . \mathrm{C}>\mathrm{R} 2\{\mathrm{j}\} . C$ then $\mathrm{j} \leftarrow \mathrm{j}+1$ else if R1 $\{\mathrm{i}\} . \mathrm{C}<\mathrm{R} 2\{\mathrm{j}\} . \mathrm{C}$ then $\mathrm{i} \leftarrow \mathrm{i}+1$

Procedure Output-Tuples

While $(R 1\{i\} . C=R 2\{j\} . C) \wedge(i \leq T(R 1)) d o$
[j $\leftarrow \mathrm{j}$;
while ($\mathrm{R} 1\{\mathrm{i}\} . \mathrm{C}=\mathrm{R} 2\{\mathrm{jj}\} . \mathrm{C}) \wedge(\mathrm{j} \leq \mathrm{T}(\mathrm{R} 2))$ do
[output pair R1 $\{\mathrm{i}\}, \mathrm{R} 2\{\mathrm{jj}\} ;$

$$
\mathrm{jj} \leftarrow \mathrm{j}+1 \quad]
$$

$$
i \leftarrow i+1]
$$

Example

	R	R1\{i\}.C	R2\{j\}.C
1	10	5	j
2	20	20	1
3	20	20	2
4	30	30	4
5	40	30	5
		50	6
		52	7

Block-based Sort-Merge Join

- Block-based sort
- Block-based merge

Two-phase Sort: Phase 1

Suppose $B(R)=1000$ and $M=100$

1	1	- ${ }^{\text {- }}$	96
2	2		97
3	3		98
4	4		99
5	5		100
!		Mem	

1	\cdots	100
101	$\cdots \cdots$	200
201	$\cdots \cdots$	300

999
1000

R

Two-phase Sort: Phase 2

Memory
Sorted R

Sort-Merge Join

Analysis of Sort-Merge Join

- Cost $=5 \times(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S}))$
- Memory requirement:
$M>=(\max (B(R), B(S)))^{1 / 2}$

Continuing with our Example

R1,R2 clustered, but unordered

Total cost $=$ sort cost + join cost

$$
=6,000+1,500=7,500 \mathrm{IOs}
$$

But: NLJ cost $=5,500$
So merge join does not pay off!

However ...

- NLJ cost $=\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{R}) \mathrm{B}(\mathrm{S}) / \mathrm{M}-1=$ O(B(R)B(S)) [Quadratic]
- Sort-merge join cost $=5 \times(B(R)+B(S))=$ $\mathrm{O}(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S}))$ [Linear]

Can we Improve Sort-Merge Join?

Do we need to create the sorted R1, R2?

A more "Efficient" Sort-Merge Join

Analysis of the "Efficient" SortMerge Join

- Cost $=3 \times(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S}))$

$$
[\mathrm{Vs.} 5 \times(\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{~S}))]
$$

- Memory requirement:

$$
M>=(B(R)+B(S))^{1 / 2}
$$

$\left[V s . M>=(\max (B(R), B(S)))^{1 / 2}\right.$

Another catch with the more "Efficient" version: Higher chances of thrashing!

Cost of "Efficient" Sort-Merge join:

Cost $=$ Read R1 + Write R1 into sublists

+ Read R2 + Write R2 into sublists
+ Read R1 and R2 sublists for Join

$$
=2000+1000+1500=4500
$$

[Vs. 7500]

Memory requirements in our Example

$B(R 1)=1000$ blocks, $1000^{1 / 2}=31.62$
$B(R 2)=500$ blocks, $500^{1 / 2}=22.36$
$B(R 1)+B(R 2)=1500,1500^{1 / 2}=38.7$

M > 32 buffers for simple sort-merge join M > 39 buffers for efficient sort-merge join

Joins Using Existing Indexes

R

B	C
a	10
a	20
b	10
d	30

	IndexI
on S.C	C
	D
10	cat
40	dog
15	bat
20	rat

- Indexed NLJ (conceptually) for each $r \in R$ do
for each $s \in S$ that matches probe(I,r.C) do output r, s pair

Continuing with our Running Example

- Assume R1.C index exists; 2 levels
- Assume R2 clustered, unordered
- Assume R1.C index fits in memory

Cost: R2 Reads: 500 IOs

for each R2 tuple:

- probe index - free
- if match, read R1 tuple
\rightarrow \# R1 Reads depends on:
- \# matching tuples
- clustering index or not

What is expected \# of matching tuples?

(a) say R1.C is key, R2.C is foreign key then expected $=1$ tuple
(b) say $V(R 1, C)=5000, T(R 1)=10,000$ with uniform assumption expect $=10,000 / 5,000=2$

What is expected \# of matching tuples?

(c) Say $\operatorname{DOM}(R 1, C)=1,000,000$

$$
T(R 1)=10,000
$$

with assumption of uniform distribution in domain

$$
\text { Expected }=\frac{10,000}{1,000,000}=\frac{1}{100} \text { tuples }
$$

Total cost with Index Join with a NonClustering Index

(a) Total cost $=500+5000(1)=5,500$
(b) Total cost $=500+5000(2)=10,500$
(c) Total cost $=500+5000(1 / 100)=550$

Will any of these change if we have a clustering index?

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

- Keep root + 99 leaf nodes in memory
- Expected cost of each index access is

$$
E=(0) \frac{99}{200}+(1) \frac{101}{200} \approx 0.5
$$

Total cost (including Index Probes)

$$
\begin{aligned}
& =500+5000[\text { Probe }+ \text { Get Records }] \\
& =500+5000[0.5+2] \\
& =500+12,500=13,000 \quad \text { (Case b) }
\end{aligned}
$$

For Case (c):

$=500+5000[0.5 \times 1+(1 / 100) \times 1]$
$=500+2500+50=3050 \mathrm{IOs}$

Block-Based NLJ Vs. Indexed NLJ

- Wrt \#joining records
- Wrt index clustering

Sort-Merge Join with Indexes

- Can avoid sorting
- Zig-zag join

So far

믄 (NLJ R2 \backslash R1 55,000 (best) Merge Join
 Sort+ Merge Join R1.C Index R2.C Index

Building Indexes on the fly for Joins

- Hash join (conceptual)
- Hash function h, range $1 \rightarrow k$
- Buckets for R1: G1, G2, ... Gk
- Buckets for R2: H1, H2, .. Hk

Algorithm
(1) Hash R1 tuples into G1--Gk
(2) Hash R2 tuples into H1--Hk
(3) For i $=1$ to k do

Match tuples in Gi , Hi buckets

Example Continued: Hash Join

- R1, R2 contiguous
\rightarrow Use 100 buckets
\rightarrow Read R1, hash, + write buckets

-> Same for R2
-> Read one R1 bucket; build memory hash table [R1 is called the build relation of the hash join]
-> Read corresponding R2 bucket + hash probe [$R 2$ is called the probe relation of the hash join]

Then repeat for all buckets
"Bucketize:" Read R1 + write

Read R2 + write

Join:

Read R1, R2

Total cost $=3 \times[1000+500]=4500$

Minimum Memory Requirements

Size of R1 bucket = (x/k) $k=$ number of buckets $(k=M-1)$ $x=$ number of R1 blocks

So... $(x / k)<=k \rightarrow k>=\sqrt{x} \rightarrow M>\sqrt{x}$
Actually, $M>\sqrt{\min (B(R), B(S))}$
[Vs. $M>\sqrt{B(R)+B(S)}$ for Sort-Merge Join]

Trick: keep some buckets in memory

$$
\begin{gathered}
\text { E.g., k'=33 } \begin{array}{l}
\text { R1 buckets }=31 \text { blocks } \\
\text { keep } 2 \text { in memory }
\end{array}
\end{gathered}
$$

called Hybrid Hash-Join

Next: Bucketize R2

- R2 buckets =500/33= 16 blocks
- Two of the R2 buckets joined immediately with G1,G2

Finally: Join remaining buckets

- for each bucket pair:
- read one of the buckets into memory
- join with second bucket
memory

Cost

- Bucketize R1 = 1000+31×31=1961
- To bucketize R2, only write 31 buckets: so, cost $=500+31 \times 16=996$
- To compare join (2 buckets already done) read $31 \times 31+31 \times 16=1457$
$\underline{\text { Total cost }}=1961+996+1457=4414$

How many Buckets in Memory?

- See Garcia-Molina, Ullman, Widom book for an interesting answer ...

Another hash join trick:

- Only write into buckets <val,ptr> pairs
- When we get a match in join phase, must fetch tuples
- To illustrate cost computation, assume:
- 100 <val,ptr> pairs/block
- expected number of result tuples is 100
- Build hash table for R2 in memory

5000 tuples $\rightarrow 5000 / 100=50$ blocks

- Read R1 and match
- Read ~ 100 R2 tuples
Total cost $=$

Read R2:
Read R1:
Get tuples:

500
1000
100
1600

So far:

	NLJ	5500
	Merge join	1500
	Sort+merge joint	7500
	R1.C index	$5500 \rightarrow 550$
	R2.C index	
	Build R.C index	
	Build S.C index	
	Hash join	4500
	with trick, R1 first with trick, R2 first	4414
	Hash join, pointers	1600

Hash-based Vs. Sort-based Joins

- Some similarities (see textbook), some dissimilarities
- Non-equi joins
- Memory requirement
- Sort order may be useful later

Summary

- NLJ ok for "small" relations (relative to memory size)
- For equi-join, where relations not sorted and no indexes exist, Hybrid Hash Join usually best

Summary (contd.)

- Sort-Merge Join good for non-equi-join (e.g., R1.C > R2.C)
- If relations already sorted, use Merge Join
- If index exists, it could be useful
- Depends on expected result size and index clustering
- Join techniques apply to Union, Intersection, Difference

Buffer Management

- DBMS Buffer Manager

- May control memory directly (i.e., does not allocate from virtual memory controlled by OS)

Buffer Replacement Policies

- Least Recently Used (LRU)
- Second-chance
- Most Recently Used (MRU)
- FIFO

Interaction between Operators and Buffer Management

- Memory (our M parameter) may change while an operator is running
- Some operators can take advantage of specific buffer replacement policies
-E.g., Rocking for Block-based NLJ

Roadmap

- A simple operator: Nested Loop Join
- Preliminaries
- Cost model
- Clustering
- Operator classes
- Operator implementation (with examples from joins)
- Scan-based
- Sort-based
- Using existing indexes
- Hash-based
- Buffer Management
- Parallel Processing

