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Roadmap 

• A simple operator: Nested Loop Join 

• Preliminaries 
– Cost model 

– Clustering 

– Operator classes 

• Operator implementation (with examples from joins) 
– Scan-based 

– Sort-based 

– Using existing indexes 

– Hash-based 

• Buffer Management 

• Parallel Processing 



• NLJ  (conceptually) 

  for each r  R1 do 

      for each s  R2 do 

   if r.C = s.C then output r,s pair 

Nested Loop Join (NLJ) 

B C 

a 10 

a 20 

b 10 

d 30 

C D 

10 cat 

40 dog 

15 bat 

20 rat 

R1 R2 



Nested Loop Join (contd.) 

• Tuple-based 

• Block-based 

• Asymmetric 



- Basic algorithm 

- Scan-based (e.g., NLJ) 

- Sort-based 

- Using existing indexes 

- Hash-based (building an index on the fly) 

- Memory management 

- Tradeoff between memory and #IOs 

- Parallel processing 

Implementing Operators 
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Operator Cost Model 

• Simplest: Count # of disk blocks read and 

written during operator execution 

• Extends to query plans 

– Cost of query plan = Sum of operator costs 

• Caution: Ignoring CPU costs 



Assumptions 

• Single-processor-single-disk machine 

– Will consider parallelism later 

• Ignore cost of writing out result 

– Output size is independent of operator 

implementation 

• Ignore # accesses to index blocks 



Parameters used in Cost Model 

B(R) = # blocks storing R tuples 

T(R) = # tuples in R 

V(R,A) = # distinct values of attr A in R  

M   = # memory blocks available 



Roadmap 

• A simple operator: Nested Loop Join 

• Preliminaries 
– Cost model 

– Clustering 

– Operator classes 

• Operator implementation (with examples from joins) 
– Scan-based 

– Sort-based 

– Using existing indexes 

– Hash-based 

• Buffer Management 

• Parallel Processing 



Notions of clustering 

• Clustered file organization 

       ….. 

• Clustered relation 

       ….. 

• Clustering index 

R1 R2 S1 S2 R3 R4 S3 S4 

R1 R2 R3 R4 R5 R5 R7 R8 



Clustering Index 

Tuples with a given value of the search 

key packed in as few blocks as possible 

A 
index 
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Examples 

T(R)   = 10,000 

B(R)   = 200  

If R is clustered, then # R tuples per block = 

10,000/200 = 50  

Let V(R,A) = 40  

If I is a clustering index on R.A, then # IOs to 

access σR.A = “a”(R) = 250/50 = 5 

 If I is a non-clustering index on R.A, then # 

IOs to access σR.A = “a”(R) = 250 ( > B(R)) 



Operator Classes 

Tuple-at-a-time Full-relation 

Unary Select Sort 

Binary Difference 
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Implementing Tuple-at-a-time 

Operators 

• One pass algorithm: 

– Scan 

– Process tuples one by one 

– Write output 

• Cost = B(R) 

– Remember: Cost = # IOs, and we ignore the 

cost to write output 



Implementing a Full-Relation 

Operator, Ex: Sort 

• Suppose T(R) x tupleSize(R) <= M x |B(R)| 

• Read R completely into memory 

• Sort 

• Write output 

• Cost = B(R) 



Implementing a Full-Relation 

Operator, Ex: Sort 

• Suppose R won’t fit within M blocks 

• Consider a two-pass algorithm for Sort; 

generalizes to a multi-pass algorithm 

• Read R into memory in M-sized chunks 

• Sort each chunk in memory and write out 

to disk as a sorted sublist 

• Merge all sorted sublists  

• Write output 

 



Two-phase Sort: Phase 1 

Suppose B(R) = 1000, R is clustered, and M = 100 
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Two-phase Sort: Phase 2 
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Analysis of Two-Phase Sort 

• Cost = 3xB(R) if R is clustered, 

         = B(R) + 2B(R’) otherwise 

• Memory requirement M >= B(R)1/2  



Duplicate Elimination 

• Suppose B(R) <= M and R is clustered 

• Use an in-memory index structure 

• Cost = B(R)  

• Can we do with less memory? 

– B((R)) <= M 

– Aggregation is similar to duplicate elimination 



Duplicate Elimination Based on 

Sorting 

• Sort, then eliminate duplicates 

• Cost = Cost of sorting + B(R) 

• Can we reduce cost? 

– Eliminate duplicates during the merge phase 



• NLJ  (conceptually) 

  for each r  R do 

      for each s  S do 

   if r.C = s.C then output r,s pair 

Back to Nested Loop Join (NLJ) 
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Analysis of Tuple-based NLJ 

• Cost with R as outer = T(R) + T(R) x T(S) 

• Cost with S as outer = T(S) + T(R) x T(S) 

• M >= 2 

 



Block-based NLJ 

• Suppose R is outer 

– Loop: Get the next M-1 R blocks into memory 

–           Join these with each block of S 

• B(R) + (B(R)/M-1) x B(S) 

• What if S is outer? 

– B(S) + (B(S)/M-1) x B(R) 



Let us work out an NLJ Example 

• Relations are not clustered 

• T(R1) = 10,000     T(R2)  = 5,000 

   10 tuples/block for R1; and for R2  

    M = 101 blocks 

Tuple-based NLJ Cost: for each R1 tuple: 

            [Read tuple + Read R2] 

Total =10,000 [1+5000]=50,010,000 IOs 



Can we do better when R,S are 

not clustered? 

Use our memory 

(1) Read 100 blocks worth of R1 tuples 

(2) Read all of R2 (1 block at a time) + join 

(3) Repeat until done 



Cost: for each R1 chunk: 

   Read chunk: 1000 IOs 

   Read R2:      5000 IOs 

        Total/chunk =  6000 

Total = 10,000  x 6000 = 60,000 IOs 
            1,000 [Vs. 50,010,000!] 



•  Can we do better? 

 Reverse join order:  R2      R1 
 

Total = 5000  x (1000 + 10,000) = 
           1000 
 
  5 x 11,000 = 55,000 IOs 

[Vs. 60,000] 



• Now suppose relations are clustered 

Example contd. NLJ R2      R1 

Cost 
For each R2 chunk: 
  Read chunk: 100 IOs 
  Read R1:      1000 IOs 
           Total/chunk = 1,100 
Total= 5 chunks x 1,100 = 5,500 IOs 

[Vs. 55,000] 



• Sort-Merge Join (conceptually) 

(1) if R1 and R2 not sorted, sort them 

(2) i  1; j  1; 

  While (i  T(R1))   (j  T(R2)) do 

      if R1{ i }.C = R2{ j }.C then OutputTuples 

      else if R1{ i }.C > R2{ j }.C then j  j+1 

      else if R1{ i }.C < R2{ j }.C then i  i+1 

Joins with Sorting 



Procedure Output-Tuples 

 While (R1{ i }.C = R2{ j }.C)  (i  T(R1)) do 

  [jj  j; 

         while (R1{ i }.C = R2{ jj }.C)  (jj  T(R2)) do 

          [output pair R1{ i }, R2{ jj };  

    jj  jj+1  ] 

       i  i+1  ] 

   



Example 

i      R1{i}.C  R2{j}.C  j 

1   10       5   1 

2   20      20   2 

3   20      20   3 

4   30      30   4 

5   40      30   5 

         50   6 

         52   7  



Block-based Sort-Merge Join 

• Block-based sort 

• Block-based merge 



Two-phase Sort: Phase 1 

Suppose B(R) = 1000 and M = 100 
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Two-phase Sort: Phase 2 
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Sort-Merge Join 

 

 

R1 

R2 

Apply our 
merge 

algorithm 

sorted sublists 

Sorted R1 

Sorted R2 



Analysis of Sort-Merge Join 

• Cost = 5 x (B(R) + B(S)) 

• Memory requirement: 

          M >= (max(B(R), B(S)))1/2 



Continuing with our Example 

R1,R2 clustered, but unordered 

 

Total cost = sort cost + join cost 

   =  6,000 + 1,500  = 7,500  IOs 

But:  NLJ cost = 5,500 
   So merge join does not pay off! 



However … 

• NLJ cost = B(R) + B(R)B(S)/M-1 = 

O(B(R)B(S))   [Quadratic] 

• Sort-merge join cost = 5 x (B(R) + B(S)) = 

O(B(R) + B(S)) [Linear] 



Can we Improve Sort-Merge Join? 

 

 

R1 

R2 

Apply our 
merge 

algorithm 

sorted sublists 

Sorted R1 

Sorted R2 

Do we need to create the sorted R1, R2? 



A more “Efficient” Sort-Merge Join 

 

 

R1 

R2 

Apply our 
merge 

algorithm 

sorted sublists 



Analysis of the “Efficient” Sort-

Merge Join 

• Cost = 3 x (B(R) + B(S))  

    [Vs. 5 x (B(R) + B(S))] 

• Memory requirement: 

            M >= (B(R) + B(S))1/2 

    [Vs.  M >= (max(B(R), B(S)))1/2         

Another catch with the more “Efficient” 

version: Higher chances of thrashing! 



Cost of “Efficient” Sort-Merge join: 

Cost = Read R1 + Write R1 into sublists 

         + Read R2 + Write R2 into sublists

    + Read R1 and R2 sublists for Join 

      = 2000 + 1000 + 1500 = 4500 

                                               [Vs. 7500] 



Memory requirements in our Example 

B(R1) = 1000 blocks, 10001/2 = 31.62 

B(R2) = 500 blocks, 5001/2 = 22.36 

B(R1) + B(R2) = 1500, 15001/2 = 38.7 

 

M > 32 buffers for simple sort-merge join 

M > 39 buffers for efficient sort-merge join 



• Indexed NLJ  (conceptually) 

   for each r  R do 

     for each s  S that matches probe(I,r.C) do 

        output r,s pair 

Joins Using Existing Indexes 

B C 
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b 10 
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Index I 

on S.C 



Continuing with our Running Example 

• Assume R1.C index exists; 2 levels 

• Assume R2 clustered, unordered 

 

• Assume R1.C index fits in memory 



Cost: R2 Reads: 500 IOs   

    

        for each R2 tuple: 

   - probe index - free 

   - if match, read R1 tuple 

   

# R1 Reads depends on: 
        -  # matching tuples 
        -  clustering index or not 



What is expected # of matching tuples? 

(a) say R1.C is key, R2.C is foreign key 

  then expected = 1 tuple 

 

(b) say V(R1,C) = 5000,  T(R1) = 10,000 
 with uniform assumption 
 expect = 10,000/5,000   = 2 



(c) Say DOM(R1, C) = 1,000,000 

           T(R1) = 10,000 

 with assumption of uniform distribution 

in domain 

  Expected =   10,000    =  1   tuples 
             1,000,000     100 

What is expected # of matching tuples? 



Total cost with Index Join with a Non-

Clustering Index 

(a)  Total cost = 500+5000(1) = 5,500 

 

(b)  Total cost = 500+5000(2) = 10,500 

 

(c)  Total cost = 500+5000(1/100) = 550 

Will any of these change if we have a 

clustering index? 



What if index does not fit in memory? 

Example: say R1.C index is 201 blocks 

 

• Keep root + 99 leaf nodes in memory 

• Expected cost of each index access is 

  E = (0)99 + (1)101   0.5 
      200  200 



Total cost (including Index Probes) 

 

 = 500+5000 [Probe + Get Records] 

 = 500+5000 [0.5+2]  

 = 500+12,500 = 13,000     (Case b) 

For Case (c): 

= 500+5000[0.5  1 + (1/100)  1] 

= 500+2500+50 = 3050 IOs  



Block-Based NLJ Vs. Indexed NLJ  

• Wrt #joining records 

• Wrt index clustering 

Join selectivity 

Join 

cost 

Plot graphs for Block NLJ and Indexed NLJ 

for clustering and non-clustering indexes 



Sort-Merge Join with Indexes 

• Can avoid sorting 

• Zig-zag join 



So far 

   NLJ R2       R1    55,000 (best) 
   Merge Join     _______ 
   Sort+ Merge Join    _______ 
   R1.C Index     _______ 
   R2.C Index     _______ 
 
   NLJ R2       R1       5500 
   Merge join     1500 
   Sort+Merge Join    7500  4500 
   R1.C Index     5500, 3050, 550 
   R2.C Index     ________ 
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• Hash join (conceptual)   

– Hash function h, range 1  k 

– Buckets for R1: G1, G2, ... Gk 

– Buckets for R2: H1, H2, ... Hk 

Algorithm 

(1) Hash R1 tuples into G1--Gk 

(2) Hash R2 tuples into H1--Hk 

(3) For i = 1 to k do 

  Match tuples in Gi, Hi buckets 

Building Indexes on the fly for Joins 



• R1, R2 contiguous  

 Use 100 buckets 

 Read R1, hash, + write buckets 

 

 

R1  

Example Continued: Hash Join 

..
. 

..
. 

10 blocks 

100 



-> Same for R2 

-> Read one R1 bucket; build memory hash table 

 [R1 is called the build relation of the hash join] 

-> Read corresponding R2 bucket + hash probe 

    [R2 is called the probe relation of the hash join] 

 

 

R1 
R2 

..
. 

R1 

Memory ..
. 

Then repeat for all buckets 



Cost: 

“Bucketize:”  Read R1 + write 

      Read R2 + write 

Join:   Read R1, R2 

 

Total cost = 3 x [1000+500] = 4500 



Minimum Memory Requirements 

Size of R1 bucket = (x/k) 

  k = number of buckets  (k = M-1) 

  x = number of R1 blocks 
 
 
So...  (x/k) <= k   k >= x   M > x  

Actually, M > min(B(R),B(S)) 

[Vs. M > B(R)+B(S) for Sort-Merge Join] 



Trick:  keep some buckets in memory 

E.g., k’=33     R1 buckets = 31 blocks 
        keep 2 in memory           
 

memory 

G1 

G2 

in 
..
. 

31 

33-2=31 

R1 

Memory use: 
G1  31 buffers 
G2  31 buffers 
Output  33-2 buffers 
R1 input 1 
Total  94 buffers 
 6 buffers to spare!! 

called Hybrid Hash-Join 



Next: Bucketize R2 

– R2 buckets =500/33= 16 blocks 

– Two of the R2 buckets joined immediately 

with G1,G2           

 
memory 

G1 

G2 
in 

..
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16 
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31 

33-2=31 

R2 buckets R1 buckets 



Finally: Join remaining buckets 

– for each bucket pair: 

• read one of the buckets into memory 

• join with second bucket          

 
memory 

Gi 

out 

..
. 

16 

33-2=31 

ans 

..
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31 

33-2=31 

R2 buckets R1 buckets 
one full R2 

bucket 

one R1 
buffer 



Cost 

• Bucketize R1 = 1000+3131=1961 

• To bucketize R2, only write 31 buckets:

 so, cost = 500+3116=996 

• To compare join (2 buckets already done)

   read 3131+3116=1457 

 

Total cost = 1961+996+1457 = 4414 

 



 How many Buckets in Memory? 

memory 

G1 

G2 

in 
R1 

memory 

G1 

in 
R1 

OR ... 

See Garcia-Molina, Ullman, Widom book 
for an interesting answer ... 

? 



Another hash join trick: 

• Only write into buckets    

 <val,ptr> pairs 

• When we get a match in join phase, 

 must fetch tuples 

 



• To illustrate cost computation, assume: 

– 100 <val,ptr> pairs/block 

– expected number of result tuples is 100 

 

 

• Build hash table for R2 in memory 

 5000 tuples  5000/100 = 50 blocks 

• Read R1 and match 

• Read ~ 100 R2 tuples 

Total cost =  Read R2:  500 
   Read R1:  1000 
   Get tuples:  100 
      1600 



So far: 

  NLJ              5500 
  Merge join   1500 
  Sort+merge joint  7500 
  R1.C index   5500  550 
  R2.C index   _____ 
  Build R.C index  _____ 
  Build S.C index  _____ 
  Hash join   4500 
     with trick,R1 first 4414 
     with trick,R2 first _____ 
  Hash join, pointers 1600 
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Hash-based Vs. Sort-based Joins 

• Some similarities (see textbook), some 

dissimilarities 

• Non-equi joins 

• Memory requirement 

• Sort order may be useful later 



Summary 

• NLJ ok for “small” relations  

 (relative to memory size) 

• For equi-join, where relations not  

 sorted and no indexes exist,  

 Hybrid Hash Join usually best 

 

 



• Sort-Merge Join good for   

 non-equi-join (e.g., R1.C > R2.C) 

• If relations already sorted, use  

 Merge Join 

• If index exists, it could be useful 

– Depends on expected result size and index 

clustering 

• Join techniques apply to Union, 

Intersection, Difference 

  

Summary (contd.) 



Buffer Management 

• DBMS Buffer Manager 

 

 

 

 

 

• May control memory directly (i.e., does not 

allocate from virtual memory controlled by OS) 

Read/write 

Buffer Manager 

Block read/write 



Buffer Replacement Policies 

• Least Recently Used (LRU) 

• Second-chance 

• Most Recently Used (MRU) 

• FIFO 

 



Interaction between Operators and 

Buffer Management 

• Memory (our M parameter) may change 

while an operator is running 

• Some operators can take advantage of 

specific buffer replacement policies 

– E.g., Rocking for Block-based NLJ 
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