CPS216: Data-Intensive Computing Systems

Query Execution (Sort and Join operators)

Shivnath Babu
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Nested Loop Join (NLJ)

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cat</td>
</tr>
<tr>
<td>40</td>
<td>dog</td>
</tr>
<tr>
<td>15</td>
<td>bat</td>
</tr>
<tr>
<td>20</td>
<td>rat</td>
</tr>
</tbody>
</table>

- **NLJ (conceptually)**

 for each $r \in R1$ do

 for each $s \in R2$ do

 if $r.C = s.C$ then output r,s pair
Nested Loop Join (contd.)

- Tuple-based
- Block-based
- Asymmetric
Implementing Operators

- Basic algorithm
 - Scan-based (e.g., NLJ)
 - Sort-based
 - Using existing indexes
 - Hash-based (building an index on the fly)
- Memory management
 - Tradeoff between memory and #IOs
- Parallel processing
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Operator Cost Model

• **Simplest**: Count # of disk blocks read and written during operator execution
• Extends to query plans
 – Cost of query plan = Sum of operator costs
• Caution: Ignoring CPU costs
Assumptions

• Single-processor-single-disk machine
 – Will consider parallelism later

• Ignore cost of writing out result
 – Output size is independent of operator implementation

• Ignore # accesses to index blocks
Parameters used in Cost Model

\[B(R) = \# \text{ blocks storing } R \text{ tuples} \]
\[T(R) = \# \text{ tuples in } R \]
\[V(R,A) = \# \text{ distinct values of attr } A \text{ in } R \]
\[M = \# \text{ memory blocks available} \]
Roadmap

• A simple operator: Nested Loop Join

• Preliminaries
 – Cost model
 – Clustering
 – Operator classes

• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based

• Buffer Management

• Parallel Processing
Notions of clustering

• Clustered file organization

R1 R2 S1 S2 R3 R4 S3 S4

• Clustered relation

R1 R2 R3 R4 R5 R5 R7 R8

• Clustering index
Clustering Index

Tuples with a given value of the search key packed in as few blocks as possible

A

index

| 10 |
| 10 |
| 35 |
| 19 |
| 19 |
| 19 |
| 19 |
| 19 |
| 19 |
| 42 |
| 37 |
Examples

\[T(R) = 10,000 \]
\[B(R) = 200 \]

If \(R \) is clustered, then \(\# \) R tuples per block = \(10,000/200 = 50 \)

Let \(V(R,A) = 40 \)

\[\rightarrow \text{If } I \text{ is a clustering index on } R.A, \text{ then } \# \text{ IOs to access } \sigma_{R.A} = \text{“a”}(R) = 250/50 = 5 \]

\[\rightarrow \text{If } I \text{ is a non-clustering index on } R.A, \text{ then } \# \text{ IOs to access } \sigma_{R.A} = \text{“a”}(R) = 250 \ (> B(R)) \]
Operator Classes

<table>
<thead>
<tr>
<th></th>
<th>Tuple-at-a-time</th>
<th>Full-relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary</td>
<td>Select</td>
<td>Sort</td>
</tr>
<tr>
<td>Binary</td>
<td></td>
<td>Difference</td>
</tr>
</tbody>
</table>
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Implementing Tuple-at-a-time Operators

• One pass algorithm:
 – Scan
 – Process tuples one by one
 – Write output

• Cost = B(R)
 – Remember: Cost = # IOs, and we ignore the cost to write output
Implementing a Full-Relation Operator, Ex: Sort

- Suppose $T(R) \times \text{tupleSize}(R) \leq M \times |B(R)|$
- Read R completely into memory
- Sort
- Write output
- Cost = $B(R)$
Implementing a Full-Relation Operator, Ex: Sort

• Suppose R won’t fit within M blocks
• Consider a two-pass algorithm for Sort; generalizes to a multi-pass algorithm
• Read R into memory in M-sized chunks
• Sort each chunk in memory and write out to disk as a sorted sublist
• Merge all sorted sublists
• Write output
Two-phase Sort: Phase 1

Suppose B(R) = 1000, R is clustered, and M = 100

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory

Sorted Sublists

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>901</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Two-phase Sort: Phase 2

Sorted Sublists

Memory

Sorted R
Analysis of Two-Phase Sort

- Cost = $3 \times B(R)$ if R is clustered,
 = $B(R) + 2B(R')$ otherwise
- Memory requirement $M \geq B(R)^{1/2}$
Duplicate Elimination

• Suppose $B(R) \leq M$ and R is clustered
• Use an in-memory index structure
• Cost = $B(R)$
• Can we do with less memory?
 – $B(\delta(R)) \leq M$
 – Aggregation is similar to duplicate elimination
Duplicate Elimination Based on Sorting

• Sort, then eliminate duplicates
• Cost = Cost of sorting + B(R)
• Can we reduce cost?
 – Eliminate duplicates during the merge phase
Back to Nested Loop Join (NLJ)

<table>
<thead>
<tr>
<th>R</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cat</td>
</tr>
<tr>
<td>40</td>
<td>dog</td>
</tr>
<tr>
<td>15</td>
<td>bat</td>
</tr>
<tr>
<td>20</td>
<td>rat</td>
</tr>
</tbody>
</table>

- NLJ (conceptually)
 for each \(r \in R \) do
 for each \(s \in S \) do
 if \(r.C = s.C \) then output \(r,s \) pair
Analysis of Tuple-based NLJ

- Cost with R as outer = $T(R) + T(R) \times T(S)$
- Cost with S as outer = $T(S) + T(R) \times T(S)$
- $M \geq 2$
Block-based NLJ

• Suppose R is outer
 – Loop: Get the next M-1 R blocks into memory
 – Join these with each block of S
• B(R) + (B(R)/M-1) x B(S)
• What if S is outer?
 – B(S) + (B(S)/M-1) x B(R)
Let us work out an NLJ Example

• Relations are **not** clustered

• $T(R1) = 10,000 \quad T(R2) = 5,000$

 10 tuples/block for R1; and for R2

 $M = 101$ blocks

Tuple-based NLJ Cost: for each R1 tuple:

$$[\text{Read tuple} + \text{Read R2}]$$

Total $= 10,000 \times [1 + 5000] = 50,010,000$ IOs
Can we do better when R,S are not clustered?

Use our memory

1. Read 100 blocks worth of R1 tuples
2. Read all of R2 (1 block at a time) + join
3. Repeat until done
Cost: for each R1 chunk:

- Read chunk: 1000 IOs
- Read R2: 5000 IOs

Total/chunk = 6000

Total = \(\frac{10,000}{1,000} \times 6000 = 60,000 \) IOs

[Vs. 50,010,000!]
Can we do better?

Reverse join order: R2 \bowtie R1

Total = \(\frac{5000}{1000} \times (1000 + 10,000) = 55,000 \) IOs

\[Vs. \ 60,000 \]
Example contd. \text{NLJ R2 } \bowtie \text{ R1}

• Now suppose relations are clustered

Cost

For each R2 chunk:

- Read chunk: 100 IOs
- Read R1: 1000 IOs

Total/chunk = 1,100

Total= 5 chunks x 1,100 = 5,500 IOs

[Vs. 55,000]
Joins with Sorting

- **Sort-Merge Join** (conceptually)

 1. if R1 and R2 not sorted, sort them
 2. \(\text{i} \leftarrow 1; \text{j} \leftarrow 1; \)

 While \((\text{i} \leq \text{T(R1)}) \land (\text{j} \leq \text{T(R2)})\) do

 if \(\text{R1}\{\text{i}\}.\text{C} = \text{R2}\{\text{j}\}.\text{C}\) then **OutputTuples**

 else if \(\text{R1}\{\text{i}\}.\text{C} > \text{R2}\{\text{j}\}.\text{C}\) then \(\text{j} \leftarrow \text{j}+1\)

 else if \(\text{R1}\{\text{i}\}.\text{C} < \text{R2}\{\text{j}\}.\text{C}\) then \(\text{i} \leftarrow \text{i}+1\)
Procedure **Output-Tuples**

While \((R1\{i\}.C = R2\{j\}.C) \wedge (i \leq T(R1))\) do

1. \([jj \leftarrow j;\]
2. while \((R1\{i\}.C = R2\{jj\}.C) \wedge (jj \leq T(R2))\) do
3. [output pair \(R1\{i\}, R2\{jj\};\]
4. \(jj \leftarrow jj+1\]
5. \(i \leftarrow i+1\]
Example

<table>
<thead>
<tr>
<th>i</th>
<th>R1{i}.C</th>
<th>R2{j}.C</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>7</td>
</tr>
</tbody>
</table>
Block-based Sort-Merge Join

- Block-based sort
- Block-based merge
Two-phase Sort: Phase 1

Suppose $B(R) = 1000$ and $M = 100$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory

Sorted Sublists
Two-phase Sort: Phase 2

Sorted Sublists

<table>
<thead>
<tr>
<th>100</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>101</td>
</tr>
<tr>
<td>300</td>
<td>201</td>
</tr>
</tbody>
</table>

Sorted R

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>200</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>801</td>
<td>900</td>
<td>1000</td>
<td>101</td>
<td>201</td>
</tr>
</tbody>
</table>

Memory

Sorted R

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Sort-Merge Join

R1

[sorted sublists]

Sorted R1

Apply our merge algorithm

R2

[sorted sublists]

Sorted R2
Analysis of Sort-Merge Join

- Cost = 5 x (B(R) + B(S))
- Memory requirement:
 \[M \geq (\max(B(R), B(S)))^{1/2} \]
Continuing with our Example

R1, R2 clustered, but unordered

Total cost = sort cost + join cost
= 6,000 + 1,500 = 7,500 IOs

But: NLJ cost = 5,500
So merge join does not pay off!
However …

- NLJ cost $= B(R) + B(R)B(S)/M-1 = O(B(R)B(S))$ [Quadratic]
- Sort-merge join cost $= 5 \times (B(R) + B(S)) = O(B(R) + B(S))$ [Linear]
Can we improve Sort-Merge Join?

R1 → \{ \text{sorted sublists} \} → \text{Sorted R1}

R2 → \{ \text{sorted sublists} \} → \text{Sorted R2}

Apply our merge algorithm

Do we need to create the sorted R1, R2?
A more “Efficient” Sort-Merge Join

R1

R2

sorted sublists

Apply our merge algorithm
Analysis of the “Efficient” Sort-Merge Join

- Cost = 3 x (B(R) + B(S))
 \[Vs. 5 x (B(R) + B(S))]\]

- Memory requirement:
 \[M \geq (B(R) + B(S))^{1/2}\]
 \[Vs. M \geq (\max(B(R), B(S)))^{1/2}\]

Another catch with the more “Efficient” version: Higher chances of thrashing!
Cost of “Efficient” Sort-Merge join:

Cost = Read R1 + Write R1 into sublists
 + Read R2 + Write R2 into sublists
 + Read R1 and R2 sublists for Join
 = 2000 + 1000 + 1500 = 4500

[Vs. 7500]
Memory requirements in our Example

\[B(R1) = 1000 \text{ blocks}, \quad 1000^{1/2} = 31.62 \]
\[B(R2) = 500 \text{ blocks}, \quad 500^{1/2} = 22.36 \]

\[B(R1) + B(R2) = 1500, \quad 1500^{1/2} = 38.7 \]

\[M > 32 \text{ buffers for simple sort-merge join} \]
\[M > 39 \text{ buffers for efficient sort-merge join} \]
Joins Using Existing Indexes

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cat</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>dog</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>bat</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>rat</td>
<td></td>
</tr>
</tbody>
</table>

Indexed NLJ (conceptually)

for each $r \in R$ do

for each $s \in S$ that matches $\text{probe}(I,r.C)$ do

output r,s pair
Continuing with our Running Example

• Assume R1.C index exists; 2 levels
• Assume R2 clustered, unordered

• Assume R1.C index fits in memory
Cost: R2 Reads: 500 IOs

for each R2 tuple:
- probe index - free
- if match, read R1 tuple

R1 Reads depends on:
- # matching tuples
- clustering index or not
What is expected # of matching tuples?

(a) say R1.C is key, R2.C is foreign key
 then expected = 1 tuple

(b) say V(R1,C) = 5000, T(R1) = 10,000
 with uniform assumption
 expect = 10,000/5,000 = 2
What is expected # of matching tuples?

(c) Say \(\text{DOM}(R1, C) = 1,000,000 \)
\[T(R1) = 10,000 \]

with assumption of **uniform distribution** in domain

\[
\text{Expected} = \frac{10,000}{1,000,000} = \frac{1}{100} \text{ tuples}
\]
Total cost with Index Join with a Non-Clustering Index

(a) Total cost = 500 + 5000(1) = 5,500

(b) Total cost = 500 + 5000(2) = 10,500

(c) Total cost = 500 + 5000(1/100) = 550

Will any of these change if we have a clustering index?
What if index does not fit in memory?

Example: say R1.C index is 201 blocks

• Keep root + 99 leaf nodes in memory
• Expected cost of each index access is

\[E = \frac{(0)99}{200} + \frac{(1)101}{200} \approx 0.5 \]
Total cost (including Index Probes)

\[= 500 + 5000 \text{ [Probe + Get Records]}\]
\[= 500 + 5000 \text{ [0.5 + 2]}\]
\[= 500 + 12,500 = 13,000 \text{ (Case b)}\]

For Case (c):

\[= 500 + 5000 \left[0.5 \times 1 + \left(\frac{1}{100}\right) \times 1\right]\]
\[= 500 + 2500 + 50 = 3050 \text{ IOs}\]
Block-Based NLJ Vs. Indexed NLJ

- \textit{Wrt} #joining records
- \textit{Wrt} index clustering

Plot graphs for Block NLJ and Indexed NLJ for clustering and non-clustering indexes.
Sort-Merge Join with Indexes

- Can avoid sorting
- Zig-zag join
So far

<table>
<thead>
<tr>
<th>Not Clustered</th>
<th>NLJ R2 (\bowtie) R1</th>
<th>55,000 (best)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Merge Join</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sort+ Merge Join</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1.C Index</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2.C Index</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clustered</th>
<th>NLJ R2 (\bowtie) R1</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Merge join</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Sort+ Merge Join</td>
<td>7500 (\rightarrow) 4500</td>
</tr>
<tr>
<td></td>
<td>R1.C Index</td>
<td>5500, 3050, 550</td>
</tr>
<tr>
<td></td>
<td>R2.C Index</td>
<td></td>
</tr>
</tbody>
</table>
Building Indexes on the fly for Joins

- Hash join (conceptual)
 - Hash function h, range $1 \rightarrow k$
 - Buckets for R_1: G_1, G_2, \ldots, G_k
 - Buckets for R_2: H_1, H_2, \ldots, H_k

Algorithm

1. Hash R_1 tuples into G_1--G_k
2. Hash R_2 tuples into H_1--H_k
3. For $i = 1$ to k do
 - Match tuples in G_i, H_i buckets
Example Continued: Hash Join

- R1, R2 contiguous
- Use 100 buckets
- Read R1, hash, + write buckets
Same for R2

Read one R1 bucket; build memory hash table
[R1 is called the **build** relation of the hash join]

Read corresponding R2 bucket + hash probe
[R2 is called the **probe** relation of the hash join]

Then repeat for all buckets
Cost:

“Bucketize:” Read R1 + write

Read R2 + write

Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500
Minimum Memory Requirements

Size of R1 bucket = \(\frac{x}{k} \)

\(k = \) number of buckets \((k = M-1)\)
\(x = \) number of R1 blocks

So... \(\frac{x}{k} \leq k \Rightarrow k \geq \sqrt{x} \Rightarrow M > \sqrt{x} \)

Actually, \(M > \sqrt{\min(B(R), B(S))} \)

[Vs. \(M > \sqrt{B(R) + B(S)} \) for Sort-Merge Join]
Trick: keep some buckets in memory

E.g., k’=33 R1 buckets = 31 blocks
keep 2 in memory

Memory use:

- G1: 31 buffers
- G2: 31 buffers
- Output: 33-2 buffers
- R1 input: 1
- Total: 94 buffers
 6 buffers to spare!!

called Hybrid Hash-Join
Next: Bucketize R2

- R2 buckets = $\frac{500}{33} = 16$ blocks
- Two of the R2 buckets joined immediately with G1, G2
Finally: Join remaining buckets

– for each bucket pair:
 • read one of the buckets into memory
 • join with second bucket
Cost
• Bucketize R1 = 1000+31\times31=1961
• To bucketize R2, only write 31 buckets:
 so, cost = 500+31\times16=996
• To compare join (2 buckets already done)
 read 31\times31+31\times16=1457

Total cost = 1961+996+1457 = 4414
How many Buckets in Memory?

See Garcia-Molina, Ullman, Widom book for an interesting answer ...
Another hash join trick:

- Only write into buckets \(<val, ptr>\) pairs
- When we get a match in join phase, must fetch tuples
• To illustrate cost computation, assume:
 – 100 <val,ptr> pairs/block
 – expected number of result tuples is 100

• Build hash table for R2 in memory
 5000 tuples → 5000/100 = 50 blocks

• Read R1 and match

• Read ~ 100 R2 tuples

 \[
 \text{Total cost} = \begin{align*}
 \text{Read R2:} & \quad 500 \\
 \text{Read R1:} & \quad 1000 \\
 \text{Get tuples:} & \quad 100 \\
 & \quad 1600
 \end{align*}
 \]
So far:

- NLJ: 5500
- Merge join: 1500
- Sort+merge joint: 7500
- R1.C index: 5500 → 550
- R2.C index:
- Build R.C index:
- Build S.C index:
- Hash join: 4500
 - with trick, R1 first: 4414
 - with trick, R2 first:
- Hash join, pointers: 1600
Hash-based Vs. Sort-based Joins

• Some similarities (see textbook), some dissimilarities
• Non-equi joins
• Memory requirement
• Sort order may be useful later
Summary

- NLJ ok for “small” relations (relative to memory size)
- For equi-join, where relations not sorted and no indexes exist, Hybrid Hash Join usually best
Summary (contd.)

- **Sort-Merge Join** good for non-equi-join (e.g., R1.C > R2.C)
- If relations already sorted, use **Merge Join**
- If index exists, it **could** be useful
 - Depends on expected result size and index clustering
- **Join techniques apply to** Union, Intersection, Difference
Buffer Management

- DBMS Buffer Manager

- May control memory directly (i.e., does not allocate from virtual memory controlled by OS)
Buffer Replacement Policies

- Least Recently Used (LRU)
- Second-chance
- Most Recently Used (MRU)
- FIFO
Interaction between Operators and Buffer Management

- Memory (our M parameter) may change while an operator is running
- Some operators can take advantage of specific buffer replacement policies
 - E.g., Rocking for Block-based NLJ
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing