
Pig, a high level data 

processing system on Hadoop 



2 

Is MapReduce not Good Enough? 

 Restricted programming model 

 Only two phases 

 Job chain for long data flow 

 Too many lines of code even for simple logic 

 How many lines do you have for word count? 

 Programmers are responsible for this 



3 

Pig to the Rescue 

 High level dataflow language (Pig Latin) 

 Much simpler than Java 

 Simplifies the data processing 

 Puts the operations at the apropriate phases 

 Chains multiple MR jobs 

 



4 

How Pig is used in the Industry 

 At Yahoo, 70% MapReduce jobs are written in 

Pig 

 Used to 

 Process web logs 

 Build user behavior models 

 Process images 

 Data mining 

 Also used by Twitter, LinkedIn, eBay, AOL, ...  



5 

Motivation by Example 

 Suppose we have 

user data in one file, 

website data in 

another file. 

 We need to find the 

top 5 most visited 

pages by users 

aged 18-25 



6 

In MapReduce 

 



7 

In Pig Latin 



8 

Pig runs over Hadoop 



9 

Wait a minute 

 How to map the data to records 

 By default, one line → one record 

 User can customize the loading process 

 How to identify attributes and map them to the 

schema 

 Delimiter to separate different attributes 

 By default, delimiter is tab. Customizable. 

 



10 

MapReduce Vs. Pig cont. 

 Join in MapReduce 

 Various algorithms. None of them are easy to 

implement in MapReduce 

 Multi-way join is more complicated 

 Hard to integrate into SPJA workflow 

 



11 

MapReduce Vs. Pig cont. 

 Join in Pig 
 Various algorithms are already available. 

 Some of them are generic to support multi-way join 

 No need to consider integration into SPJA workflow. Pig 

does that for you! 

   

  A = LOAD 'input/join/A'; 

             B = LOAD 'input/join/B'; 

             C = JOIN A BY $0, B BY $1; 

             DUMP C; 



12 

Pig Latin  

 Data flow language 

 Users specify a sequence of operations to 

process data 

 More control on the process, compared with 

declarative language 

 Various data types are supported 

 Schema is supported 

 User-defined functions are supported 

 



13 

Statement 

 A statement represents an operation, or a stage in 

the data flow 

 Usually a variable is used to represent the result of 

the statement 

 Not limited to data processing operations, but also 

contains filesystem operations 



14 

Schema  

 User can optionally define the schema of the input 

data 

 Once the schema of the source data is given, the 

schema of the intermediate relation will be induced 

by Pig 

 



15 

Schema cont.  

 Why schema? 

 Scripts are more readable (by alias) 

 Help system validate the input 

 Similar to Database? 

 Yes. But schema here is optional 

 Schema is not fixed for a particular dataset, 

but changable 

 



16 

Schema cont.  

 Schema 1 
A = LOAD 'input/A' as (name:chararray, age:int); 

B = FILTER A BY age != 20; 

 Schema 2 
A = LOAD 'input/A' as (name:chararray, age:chararray); 

B = FILTER A BY age != '20';  

 No Schema 
A = LOAD 'input/A' ; 

B = FILTER A BY A.$1 != '20'; 



17 

Data Types 

 Every attribute can always be interpreted as a 

bytearray, without further type definition 

 Simple data types 

 For each attribute 

 Defined by user in the schema 

 Int, double, chararray ... 

 Complex data types 

 Usually contructed by relational operations 

 Tuple, bag, map 



18 

Data Types cont. 

 Type casting 

 Pig will try to cast data types when  type 

inconsistency is seen. 

 Warning will be thrown if casting fails. Process 

still goes on 

 Validation 

 Null will replace the inconvertable data type in 

type casting 

 User can tell a corrupted record by detecting 

whether a particular attribute is null 



19 

Date Types cont. 



20 

Operators 

 Relational Operators 

 Represent an operation that will be added to 

the logical plan 

 LOAD, STORE, FILTER, JOIN, 

FOREACH...GENERATE 

 

 



21 

Operators 

 Diagnostic Operators 

 Show the status/metadata of the relations 

 Used for debugging 

 Will not be integrated into execution plan 

 DESCRIBE, EXPLAIN, ILLUSTRATE. 

 

 



22 

Functions  

 Eval Functions 

 Record transformation 

 Filter Functions 

 Test whether a record satisfies particular predicate 

 Comparison Functions 

 Impose ordering between two records. Used by ORDER 

operation 

 Load Functions 

 Specify how to load data into relations 

 Store Functions 

 Specify how to store relations to external storage 



23 

Functions  

 Built-in Functions 

 Hard-coded routines offered by Pig.  

 User Defined Function (UDF) 

 Supports customized functionalities 

 Piggy Bank, a warehouse for UDFs 



View of Pig from inside 

 



25 

Pig Execution Modes 

 Local mode 

 Launch single JVM 

 Access local file system 

 No MR job running 

 Hadoop mode 

 Execute a sequence of MR jobs 

 Pig interacts with Hadoop master node 



26 

Compilation Compilation 



27 04/13/10 

Parsing 

 Type checking with schema 

 Reference verification 

 Logical plan generation 

 One-to-one fashion 

 Independent of execution platform 

 Limited optimization 

 No execution until DUMP or STORE 

Parsing 



28 04/13/10 

Logic Plan 

A=LOAD 'file1' AS (x, y, z); 

B=LOAD 'file2' AS (t, u, v); 

C=FILTER A by y > 0; 

D=JOIN C BY x, B BY u; 

E=GROUP D BY z; 

F=FOREACH E GENERATE     
 group, COUNT(D); 

STORE F INTO 'output'; 

LOAD 

FILTER 

LOAD 

JOIN 

GROUP 

FOREACH 

STORE 

Logical Plan 



29 04/13/10 

Physical Plan 

 1:1 correspondence with most logical operators 

 Except for: 

 DISTINCT 

 (CO)GROUP 

 JOIN 

 ORDER 

Physical Plan 



 Two typical types of join 

 Map-side join 

 Reduce-side join 

 

Joins in MapReduce 



Map tasks: 

Table R 

Table L 

Map-side Join 



REDUCE-SIDE JOIN 

Drawback: all records may have to be buffered 

Out of memory 

  The key cardinality is small  

  The data is highly skewed  

L: ratings.dat 

R: movies.dat 

Pairs: (key, targeted record) 

shuffle input map reduce output 

1::1193::5::978300760 

1::661::3::978302109 

1::661::3::978301968 

1::661::4::978300275 

1 ::1193::5::97882429 

661::James and the Glant… 

914::My Fair Lady.. 

1193::One Flew Over the… 

2355::Bug’s Life, A… 

3408::Erin Brockovich… 

1193, L:1::1193::5::978300760 

661, L :1::661::3::978302109 

661, L :1::661::3::978301968 

661, L :1::661::4::978300275 

1193, L :1 ::1193::5 ::97882429 

661, R:661::James and the Gla… 

914, R: 914::My Fair Lady.. 

1193, R: 1193::One Flew Over … 

2355, R: 2355::Bug’s Life, A… 

3408, R: 3408::Erin Brockovi… 

(661, …) 

(661, …) 

(661, …) 

(1193,  …) 

(1193, …) 

(661, …) 

(2355, …) 

(3048, …) 

(914,  …) 

(1193, …) 

(661, 

[L :1::661::3::97…], 

[R:661::James…], 

[L:1::661::3::978…], 

[L :1::661::4::97…]) 

(2355, [R:2355::B’…]) 

(3408, [R:3408::Eri…]) 

(1,Ja..,3, …) 

(1,Ja..,3, …) 

(1,Ja..,4, …) 

Group by join key 

Buffers records into two sets 

according to the table tag 

+ 

Cross-product 

 {(661::James…) } 

           X 

  (1::661::3::97…), 

  (1::661::3::97…), 

  (1::661::4::97…) 

Phase /Function Improvement 

Map Function Output key is changed to a composite of the join key and the 

table tag. 

Partitioning function Hashcode is computed from just the join key part of  the 

composite key 

Grouping function Records are grouped on just the join key 



33 04/13/10 

Physical Plan 

 1:1 correspondence with most logical operators 

 Except for: 

 DISTINCT 

 (CO)GROUP 

 JOIN 

 ORDER 

Physical Plan 



34 04/13/10 

LOAD 

FILTER 

LOAD 

JOIN 

GROUP 

FOREACH 

STORE 

LOAD 

FILTER 

LOAD 

LOCAL REARRANGE 

PACKAGE 

FOREACH 

STORE 

GLOBAL REARRANGE 

LOCAL REARRANGE 

PACKAGE 

FOREACH 

GLOBAL REARRANGE 



35 04/13/10 

Physical Optimization 

 Always use combiner for pre-aggregation 

 Insert SPLIT to re-use intermediate result 

 Early projection (logical or physical?) 

Physical Optimizations 



36 04/13/10 

MapReduce Plan 

 Determine MapReduce boundaries 

 GLOBAL REARRANGE 

 STORE/LOAD 

 Some operations are done by MapReduce 
framework 

 Coalesce other operators into Map & Reduce 
stages 

 Generate job jar file 

MapReduce Plan 



37 04/13/10 

LOAD 

FILTER 

LOAD 

LOCAL REARRANGE 

PACKAGE 

FOREACH 

STORE 

GLOBAL REARRANGE 

LOCAL REARRANGE 

PACKAGE 

FOREACH 

GLOBAL REARRANGE 

FILTER 

LOCAL REARRANGE 

Map 

Reduce 

Map 

Reduce 

PACKAGE 

FOREACH 

LOCAL REARRANGE 

PACKAGE 

FOREACH 



38 

Execution in Hadoop Mode  

 The MR jobs not dependent on anything in 

the MR plan will be submitted for execution 

 MR jobs will be removed from MR plan after 

completion 

 Jobs whose dependencies are satisfied are now 

ready for execution 

 Currently, no support for inter-job fault-

tolerance 



Discussion of the Two 

Readings on Pig (SIGMOD 

2008 and VLDB 2009)  



40 

Discussion Points for Reading 1  

 Examples of the nested data model, 

CoGroup, and Join (Figure 2) 

 Nested query in Section 3.7 



41 

What are the Logical, Physical, and 

MapReduce plans for:  

STORE answer INTO ‘/user/alan/answer’; 



42 
04/13/10 

LOAD LOAD 

LOCAL REARRANGE 

PACKAGE 

FOREACH 

STORE 

GLOBAL REARRANGE 

LOCAL REARRANGE 

PACKAGE 

FOREACH 

GLOBAL REARRANGE 

FILTER 

LOCAL REARRANGE 

Map 

Reduce 

Map 

Reduce 

PACKAGE 

FOREACH 

LOCAL REARRANGE 

PACKAGE 

FOREACH 

FILTER 



B,D 

R.A = “c” 

R 

S 

Recall Operator Plumbing 

 Materialization: output of one operator written to 

disk, next operator reads from the disk  

 Pipelining: output of one operator directly fed to 

next operator 



B,D 

R.A = “c” 

R 

S 

Materialization 

Materialized here 



B,D 

R.A = “c” 

R 

S 

Iterators: Pipelining 

 Each operator supports: 

•  Open() 

•  GetNext() 

•  Close() 



46 04/13/10 

FILTER 

LOCAL REARRANGE 

Map 

Reduce 
PACKAGE 

FOREACH 

How do these operators execute in Pig? 

 Hints (based on Reading 2): 

 What will Hadoop’s map 

function and reduce function 

calls do in this case?  

 How does each operator work? 

What does each operator do? 

(Section 4.3) 

 Outermost operator graph 

(Section 5) 

 Iterator model (Section 5) 



47 04/13/10 

Branching Flows in Pig 

 Hints (based on Reading 2, 

Section 5.1, last two paras 

before Section 5.1.1): 

 Outermost data flow graph 

 New pause signal for iterators 

clicks = LOAD `clicks' 

AS (userid, pageid, linkid, viewedat); 

 

SPLIT clicks INTO 

pages IF pageid IS NOT NULL, 

links IF linkid IS NOT NULL; 

 

cpages = FOREACH pages GENERATE userid, 

CanonicalizePage(pageid) AS cpage, 

viewedat; 

 

clinks = FOREACH links GENERATE userid, 

CanonicalizeLink(linkid) AS clink, 

viewedat; 

 

STORE cpages INTO `pages'; 

STORE clinks INTO `links'; 



48 04/13/10 

Branching Flows in Pig 

 Draw the MapReduce plan for this query 

clicks = LOAD `clicks' 

AS (userid, pageid, linkid, viewedat); 

 

byuser = GROUP clicks BY userid; 

 

result = FOREACH byuser {  

 

    uniqPages = DISTINCT clicks.pageid; 

 

    uniqLinks = DISTINCT clicks.linkid; 

 

    GENERATE group, COUNT(uniqPages), 

COUNT(uniqLinks); 

 

}; 



49 04/13/10 

Branching Flows in Pig 

 Draw the MapReduce plan for this query 

clicks = LOAD `clicks' 

AS (userid, pageid, linkid, viewedat); 

 

byuser = GROUP clicks BY userid; 

 

result = FOREACH byuser { 

 

    fltrd = FILTER clicks BY viewedat IS NOT 

NULL; 

 

    uniqPages = DISTINCT fltrd.pageid; 

 

    uniqLinks = DISTINCT fltrd.linkid; 

 

    GENERATE group, COUNT(uniqPages), 

COUNT(uniqLinks); 

}; 



Performance and future 

improvement 



51 

Pig Performance 

Images from  http://wiki.apache.org/pig/PigTalksPapers 



52 

Future Improvements  

 Query optimization 

 Currently rule-based optimizer for plan rearrangement 

and join selection 

 Cost-based in the future 

 Non-Java UDFs 

 Grouping and joining on pre-partitioned/sorted data 

 Avoid data shuffling for grouping and joining 

 Building metadata facilities to keep track of data layout 

 Skew handling 

 For load balancing 



53 

 Get more information at the Pig website 

 You can work with the source code to 

implement something new in Pig 

 Also take a look at Hive, a similar system 

from Facebook 



54 

References 

 Some of the content come from the following 
presentations: 

 Introduction to data processing using Hadoop and 
Pig, by Ricardo Varela 

 Pig, Making Hadoop Easy, by Alan F. Gates 

 Large-scale social media analysis with Hadoop, 
by Jake Hofman 

 Getting Started on Hadoop, by Paco Nathan 

 MapReduce Online, by Tyson Condie and Neil 
Conway 


