CPS216: Data-Intensive Computing Systems

Introduction to Query Processing

Shivnath Babu

Query Processing

Declarative SQL Query \rightarrow Query Plan

NOTE: You will not be tested on how well you know SQL. Understanding the SQL introduced in class will be sufficient (a primer follows). SQL is described in Chapter 6, GMUW.

<u>Focus:</u> Relational System (i.e., data is organized as tables, or relations)

SQL Primer

We will focus on SPJ, or Select-Project-Join Queries

- Select <attribute list>
- From <relation list>
- Where <condition list>
- Example Filter Query over R(A,B,C):
- Select B
- From R
- Where $R.A = "c" \land R.C > 10$

SQL Primer (contd.)

We will focus on SPJ, or Select-Project-Join-Queries

- Select <attribute list>
- From <relation list>
- Where <condition list>
- Example Join Query over R(A,B,C) and S(C,D,E):
- Select B, D
- From R, S
- Where $R.A = "c" \land S.E = 2 \land R.C = S.C$

How do we execute this query?

Select B,D
From R,S
Where R.A = "c"
$$\land$$
 S.E = 2 \land
R.C=S.C

- Do Cartesian product
- Select tuples
- Do projection

Relational Algebra- can be used to
describe plansEx: Plan I $\Pi_{B,D}$ $\Pi_{B,D}$ $\Box_{R,A="c" \land S.E=2 \land R.C=S.C}$

S

<u>Relational Algebra Primer</u> (Chapter 5, GMUW)

Select: $\sigma_{R,A="c" \land R,C=10}$ Project: $\Pi_{B,D}$ Cartesian Product: R X S Natural Join: R $\triangleright i$ S

<u>OR:</u> $\Pi_{B,D}$ [$\sigma_{R,A="c" \land S,E=2 \land R,C=S,C}$ (RXS)]

Another idea:

natural join

<u> Plan III</u>

Use R.A and S.C Indexes (1) Use R.A index to select R tuples with R.A = "c"

- (2) For each R.C value found, use S.C index to find matching tuples
- (3) Eliminate S tuples S.E \neq 2
- (4) Join matching R,S tuples, projectB,D attributes, and place in result

Example Query

Select B,D From R,S Where R.A = "c" \land R.C=S.C

Along with Parsing ...

- Semantic checks
 - Do the projected attributes exist in the relations in the From clause?
 - Ambiguous attributes?
 - Type checking, ex: R.A > 17.5
- Expand views

<u>Relational Algebra:</u> $\Pi_{B,D} [\sigma_{R,A="c" \land R,C = S,C} (RXS)]$

$\Pi_{\mathsf{B},\mathsf{D}}\left[\sigma_{\mathsf{R},\mathsf{C}=\mathsf{S},\mathsf{C}}\left[\sigma_{\mathsf{R},\mathsf{A}="\mathsf{c}"}(\mathsf{R} \mathsf{X} \mathsf{S})\right]\right]$

Some Query Rewrite Rules

- Transform one logical plan into another
 Do not use statistics
- Equivalences in relational algebra
- Push-down predicates
- Do projects early
- Avoid cross-products if possible

Equivalences in Relational Algebra

 $R \bowtie S = S \bowtie R \quad Commutativity$ $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \quad Associativity$

Also holds for: Cross Products, Union, Intersection $R \times S = S \times R$ $(R \times S) \times T = R \times (S \times T)$ $R \cup S = S \cup R$ $R \cup (S \cup T) = (R \cup S) \cup T$

$\Pi_{\mathsf{B},\mathsf{D}}\left[\sigma_{\mathsf{R},\mathsf{C}=\mathsf{S},\mathsf{C}}\left[\sigma_{\mathsf{R},\mathsf{A}="\mathsf{c}"}(\mathsf{R} \mathsf{X} \mathsf{S})\right]\right]$

Rules: Project

Let: X = set of attributes Y = set of attributes XY = X U Y $\pi_{xy}(R) = \pi_x[\pi_y(R)]$

<u>Rules:</u> $\sigma + \bowtie$ combined

Let p = predicate with only R attribs q = predicate with only S attribs m = predicate with only R,S attribs

 $\sigma_{p} (\mathsf{R} \bowtie \mathsf{S}) = [\sigma_{p} (\mathsf{R})] \bowtie \mathsf{S}$ $\sigma_{q} (\mathsf{R} \bowtie \mathsf{S}) = \mathsf{R} \bowtie [\sigma_{q} (\mathsf{S})]$

<u>**Rules:**</u> $\sigma + \bowtie$ combined (continued)

$\begin{aligned} \boldsymbol{\sigma}_{p \wedge q} \left(\mathsf{R} \bowtie \mathsf{S} \right) &= \left[\boldsymbol{\sigma}_{p} \left(\mathsf{R} \right) \right] \bowtie \left[\boldsymbol{\sigma}_{q} \left(\mathsf{S} \right) \right] \\ \boldsymbol{\sigma}_{p \wedge q \wedge m} \left(\mathsf{R} \bowtie \mathsf{S} \right) &= \\ \boldsymbol{\sigma}_{m} \left[\left(\boldsymbol{\sigma}_{p} \, \mathsf{R} \right) \bowtie \left(\boldsymbol{\sigma}_{q} \, \mathsf{S} \right) \right] \end{aligned}$

Opvq (R ▷<< S) =

 $\left[(\sigma_{P} R) \bowtie S \right] U \left[R \bowtie (\sigma_{q} S) \right]$

Which are "good" transformations?

□ $\sigma_{p1 \land p2}(R) \rightarrow \sigma_{p1}[\sigma_{p2}(R)]$ □ $\sigma_{p}(R \bowtie S) \rightarrow [\sigma_{p}(R)] \bowtie S$ □ $R \bowtie S \rightarrow S \bowtie R$

 $\Box \ \pi_{x}[\sigma_{P}(R)] \rightarrow \pi_{x}\{\sigma_{P}[\pi_{xz}(R)]\}$

Conventional wisdom: do projects early

<u>Example</u>: R(A,B,C,D,E) P: (A=3) ∧ (B="cat")

$\pi \in \{\sigma_{P}(R)\}$ vs. $\pi \in \{\sigma_{P}\{\pi_{ABE}(R)\}\}$

But: What if we have A, B indexes?

Bottom line:

- No transformation is <u>always</u> good
- Some are usually good:
 - Push selections down
 - Avoid cross-products if possible
 - Subqueries \rightarrow Joins

Avoid Cross Products (if possible)

Select B,D From R,S,T,U Where R.A = S.B \land R.C=T.C \land R.D = U.D

- Which join trees avoid cross-products?
- If you can't avoid cross products, perform them as late as possible

More Query Rewrite Rules

- Transform one logical plan into another
 - Do not use statistics
- Equivalences in relational algebra
- Push-down predicates
- Do projects early
- Avoid cross-products if possible
- Use left-deep trees
- Subqueries \rightarrow Joins
- Use of constraints, e.g., uniqueness

Physical Plan Generation

Operator Plumbing $\pi_{\mathsf{B},\mathsf{D}}$

- Materialization: output of one operator written to disk, next operator reads from the disk
- Pipelining: output of one operator directly fed to next operator

Materialization

Iterators: Pipelining

- → Each operator supports:
 - Open()
 - GetNext()
 - Close()

Iterator for Table Scan (R)

```
Open() {
 /** initialize variables */
 b = first block of R;
 t = first tuple in block b;
}
```

```
Close() {
    /** nothing to be done */
}
```

```
GetNext() {
 IF (t is past last tuple in block b) {
    set b to next block;
    IF (there is no next block)
      /** no more tuples */
      RETURN EOT;
    ELSE t = first tuple in b;
 }
 /** return current tuple */
 oldt = t;
 set t to next tuple in block b;
 RETURN oldt;
```

Iterator for Select

} }

```
Close() {
    /** inform child */
    Child.Close();
}
```

GetNext() { LOOP: t = Child.GetNext(); IF (t == EOT) { /** no more tuples */ **RETURN EOT;** ELSE IF (t.A == "c")RETURN t; **ENDLOOP:**

Iterator for Sort

Iterator for Tuple Nested Loop Join

TNLJ (conceptually)
 for each r ∈ Lexp do
 for each s ∈ Rexp do
 if Lexp.C = Rexp.C, output r,s

Question: What is the sequence of getNext() calls?

Question: What is the sequence of getNext() calls?

Cost Measure for a Physical Plan

- There are many cost measures
 - Time to completion
 - Number of I/Os (we will see a lot of this)
 - Number of getNext() calls
- Tradeoff: Simplicity of estimation Vs. Accurate estimation of performance as seen by user