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Hadoop MapReduce Ecosystem 
 Popular solution to Big Data Analytics 
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Practitioners of Big Data Analytics 
Who are the users? 

 Data analysts, statisticians, computational scientists… 

 Researchers, developers, testers… 

 You! 
 

Who performs setup and tuning? 

 The users! 

 Usually lack expertise to tune the system 
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Tuning Challenges 
 Heavy use of programming languages for MapReduce 

programs (e.g., Java/python) 
 

 Data loaded/accessed as opaque files 
 

 Large space of tuning choices 
 

 Elasticity is wonderful, but hard to achieve (Hadoop 

has many useful mechanisms, but policies are lacking) 
 

 Terabyte-scale data cycles 
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 Our goal: Provide good performance automatically 

Starfish: Self-tuning System 
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What are the Tuning Problems? 
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Starfish’s Core Approach to Tuning 
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1) if Δ(conf. parameters) then what …?  

2) if Δ(data properties) then what …?  

3) if Δ(cluster properties) then what …?  
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Starfish Architecture 
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MapReduce Job Execution 
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What Controls MR Job Execution? 

 Space of configuration choices: 

 Number of map tasks 

 Number of reduce tasks 

 Partitioning of map outputs to reduce tasks 

 Memory allocation to task-level buffers 

 Multiphase external sorting in the tasks 

 Whether output data from tasks should be compressed 

 Whether combine function should be used 
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job j = < program p, data d, resources r, configuration c > 
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Effect of Configuration Settings 

 Use defaults or set manually (rules-of-thumb) 

 Rules-of-thumb may not suffice 
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MapReduce Job Tuning in a Nutshell 
 Goal: 

 

 

 Challenges: p is an arbitrary MapReduce program; c is 

high-dimensional; … 
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Job Profile 
 Concise representation of program execution as a job 

 Records information at the level of “task phases” 

 Generated by Profiler through measurement or by the 

What-if Engine through estimation 
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Job Profile Fields 

Dataflow: amount of data 
flowing through task phases 

Map output bytes 

Number of spills 

Number of records in buffer per spill 
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Costs: execution times at the level of 
task phases 
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Generating Profiles by Measurement 

 Goals 

 Have zero overhead when profiling is turned off 

 Require no modifications to Hadoop 

 Support unmodified MapReduce programs written in 

Java or Hadoop Streaming/Pipes (Python/Ruby/C++) 
 

 Approach: Dynamic (on-demand) instrumentation 

 Event-condition-action rules are specified (in Java) 

 Leads to run-time instrumentation of Hadoop internals 

 Monitors task phases of MapReduce job execution 

 We currently use Btrace (Hadoop internals are in Java) 
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Generating Profiles by Measurement 

9/26/2011 17 

split 0 map out 0 reduce 

split 1 map 

raw data 

raw data 

raw data 

map 

profile 

reduce 

profile 

job 

profile 

Use of Sampling 

• Profile fewer tasks 

• Execute fewer tasks 

JVM = Java Virtual Machine,  ECA = Event-Condition-Action 

JVM JVM 

JVM 

Enable Profiling 

ECA rules 

Starfish 



What-if Engine 

Job Oracle 

Virtual Job Profile  for <p, d2, r2, c2> 

What-if Engine 
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Virtual Profile Estimation 
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Job Optimizer 

9/26/2011 20 

Best Configuration  

Settings <copt> for <p, d2, r2> 

Subspace Enumeration 

Recursive Random Search 

Just-in-Time Optimizer 

Job 

Profile 

<p, d1, r1, c1> 

Input Data 

Properties  

<d2> 

Cluster 

Resources 

<r2> 

What-if 

calls 

Starfish 



Workflow Optimization Space 
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Optimizations on TF-IDF Workflow 
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New Challenges 
What-if challenges: 

 Support concurrent job 

execution 

 Estimate intermediate data 

properties 

 

 Optimization challenges 

 Interactions across jobs 

 Extended optimization space 

 Find good configuration 

settings for individual jobs 
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Cluster Sizing Problem 
 Use-cases for cluster sizing 

 Tuning the cluster size for elastic workloads 

 Workload transitioning from development cluster to 

production cluster 

 Multi-objective cluster provisioning 

 

 Goal 

 Determine cluster resources & job-level configuration 

parameters to meet workload requirements 
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Multi-objective Cluster Provisioning 
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Experimental Evaluation 
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 Starfish (versions 0.1, 0.2) to manage Hadoop on EC2 

 Different scenarios: Cluster  ×  Workload  × Data 

 EC2 Node 

Type 

CPU: EC2 

units 

Mem I/O Perf. Cost 

/hour 

#Maps 

/node 

#Reds

/node 

MaxMem 

/task 

m1.small 1 (1 x 1) 1.7 GB moderate $0.085 2 1 300 MB 

m1.large 4 (2 x 2) 7.5 GB high $0.34 3 2 1024 MB 

m1.xlarge 8 (4 x 2) 15 GB high $0.68 4 4 1536 MB 

c1.medium 5 (2 x 2.5) 1.7 GB moderate $0.17 2 2 300 MB 

c1.xlarge 20 (8 x 2.5) 7 GB high $0.68 8 6 400 MB 

cc1.4xlarge 33.5 (8) 23 GB very high $1.60 8 6 1536 MB 
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Experimental Evaluation 
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 Starfish (versions 0.1, 0.2) to manage Hadoop on EC2 

 Different scenarios: Cluster  ×  Workload  × Data 

Abbr. MapReduce Program Domain Dataset 

CO Word Co-occurrence Natural Lang Proc. Wikipedia (10GB – 22GB) 

WC WordCount Text Analytics Wikipedia (30GB – 1TB) 

TS TeraSort Business Analytics TeraGen (30GB – 1TB) 

LG LinkGraph Graph Processing Wikipedia (compressed ~6x) 

JO Join Business Analytics TPC-H (30GB – 1TB) 

TF Term Freq. - Inverse 

Document Freq. 

Information Retrieval Wikipedia (30GB – 1TB) 
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Job Optimizer Evaluation 
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Hadoop cluster: 30 nodes, m1.xlarge 

Data sizes: 60-180 GB 
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Estimates from the What-if Engine 
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Hadoop cluster: 16 nodes, c1.medium 

MapReduce Program: Word Co-occurrence 

Data set: 10 GB Wikipedia 
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Profiling Overhead Vs. Benefit 
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Multi-objective Cluster Provisioning 
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More info: www.cs.duke.edu/starfish 
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