Due Date: Noon, December 5, 2011

Problem 1 (20pts) Let P be a convex polygon with n vertices. The weight of a triangulation of P is the sum of the lengths of its diagonals. Describe an $O\left(n^{3}\right)$ time algorithm for computing the minimum weight triangulation of P. (Hint: Use dynamic programming.)

Problem 2 (20pts) Let M be a triangulation of the convex hull of a set V of n points in \mathbb{R}^{2}. Let $h: V \rightarrow \mathbb{R}$ be a height function on the points of S; assume that the height of each vertex is distinct. Using linear interpolation inside each triangle of M, we can define the height of any point in M, i.e., we have a function $h: M \rightarrow \mathbb{R}$. The graph of M is a triangulated piecewise-linear surface in \mathbb{R}^{3}. For a value $z \in \mathbb{R}$, the level set of M at z, denoted by M_{z}, is $M_{z}=\{x \in M \mid h(x)=z\} . M_{z}$ is a collection polygonal cycles; each cycle is called a contour at height z. Describe an algorithm that can preprocesses M, in $O(n \log n)$ time, into a linear-size data structure so that for a any value z, the vertices of all the contours at height z can be computed in $O(\log n+k)$ time; here k is the number of vertices in the contour.

Problem 3 ($\mathbf{3 0} \mathbf{p t s}$) Let S be a set of n points in \mathbb{R}^{2}. For a circle C, let $\omega(C, S)$ be the maximum distance between C and a point of S, i.e., if c and r are the center and radius of C, then $\omega(C, S)=$ $\max _{p \in S}| ||p-c \|-r|$. Let $C^{*}=\arg \min _{C} \omega(C, S)$, where the minimum is taken over all circles in \mathbb{R}^{2}. Let $\operatorname{Vor}(S)$, $\operatorname{Vor}_{f}(S)$ be the nearest-neighbor and the farthest-neighbor Voronoi diagrams of S.

- Show that the center of C^{*} is a vertex of $\operatorname{Vor}(S)$, a vertex of $\operatorname{Vor}_{f}(S)$, or an intersection point of the edges of the two diagrams.
- Show that C^{*} can be computed in $O\left(n^{2}\right)$ time.

Problem 4 (30pts) Let $X, Y \subset \mathbb{R}^{2}$ be two sets. The Minkowski sum of X and Y is

$$
X \oplus Y=\{x+y \mid x \in X, y \in Y\} .
$$

Let P_{1}, P_{2} be two convex n-gons in \mathbb{R}^{2}, and let S_{1}, S_{2} be the set of the vertices in P_{1} and P_{2}, respectively. Set $P=P_{1} \oplus P_{2}$. Show that

- $P=\operatorname{conv}\left(S_{1} \oplus S_{2}\right)$;
- each edge of P is of the form $e \oplus v$, where e is an edge P_{1} and $v \in S_{2}$, or e is an edge of P_{2} and $v \in S_{1}$;
- P can be computed in $O(n)$ time, assuming that S_{1} and S_{2} are given as sorted in clockwise direction.

