FINAL EXAM COURSE: CPS234

Due Date: Noon, December 5, 2011

**Problem 1 (20pts)** Let P be a convex polygon with n vertices. The *weight* of a triangulation of P is the sum of the lengths of its diagonals. Describe an  $O(n^3)$  time algorithm for computing the *minimum weight* triangulation of P. (**Hint:** Use dynamic programming.)

**Problem 2 (20pts)** Let M be a triangulation of the convex hull of a set V of n points in  $\mathbb{R}^2$ . Let  $h:V\to\mathbb{R}$  be a height function on the points of S; assume that the height of each vertex is distinct. Using linear interpolation inside each triangle of M, we can define the height of any point in M, i.e., we have a function  $h:M\to\mathbb{R}$ . The graph of M is a triangulated piecewise-linear surface in  $\mathbb{R}^3$ . For a value  $z\in\mathbb{R}$ , the *level set* of M at z, denoted by  $M_z$ , is  $M_z=\{x\in M\mid h(x)=z\}$ .  $M_z$  is a collection polygonal cycles; each cycle is called a *contour* at height z. Describe an algorithm that can preprocesses M, in  $O(n\log n)$  time, into a linear-size data structure so that for a any value z, the vertices of all the contours at height z can be computed in  $O(\log n+k)$  time; here k is the number of vertices in the contour.

**Problem 3 (30pts)** Let S be a set of n points in  $\mathbb{R}^2$ . For a circle C, let  $\omega(C,S)$  be the maximum distance between C and a point of S, i.e., if c and r are the center and radius of C, then  $\omega(C,S) = \max_{p \in S} ||p-c|| - r|$ . Let  $C^* = \arg\min_C \omega(C,S)$ , where the minimum is taken over all circles in  $\mathbb{R}^2$ . Let  $\operatorname{Vor}(S)$ ,  $\operatorname{Vor}_f(S)$  be the nearest-neighbor and the farthest-neighbor Voronoi diagrams of S.

- Show that the center of  $C^*$  is a vertex of Vor(S), a vertex of  $Vor_f(S)$ , or an intersection point of the edges of the two diagrams.
- Show that  $C^*$  can be computed in  $O(n^2)$  time.

**Problem 4 (30pts)** Let  $X, Y \subset \mathbb{R}^2$  be two sets. The *Minkowski sum* of X and Y is

$$X \oplus Y = \{x + y \mid x \in X, y \in Y\}.$$

Let  $P_1, P_2$  be two convex n-gons in  $\mathbb{R}^2$ , and let  $S_1, S_2$  be the set of the vertices in  $P_1$  and  $P_2$ , respectively. Set  $P = P_1 \oplus P_2$ . Show that

- $P = \operatorname{conv}(S_1 \oplus S_2);$
- each edge of P is of the form  $e \oplus v$ , where e is an edge  $P_1$  and  $v \in S_2$ , or e is an edge of  $P_2$  and  $v \in S_1$ ;
- P can be computed in O(n) time, assuming that  $S_1$  and  $S_2$  are given as sorted in clockwise direction.