Due Date: November 14, 2011

Problem $1(10 p t s)$ Let L be a set of n lines in \mathbb{R}^{2}. For a cell c in the arrangement $\mathcal{A}(L)$, let $|c|$ be the number of edges in c. Show that

$$
\sum_{c \in \mathcal{A}(L)}|c|^{2}=O\left(n^{2}\right)
$$

Problem 2 (10pts) Describe an $O\left(n^{3}\right)$ time algorithm to compute a minimum-weight triangulation of a convex n-gon. (Hint: Use dynamic programming.)

Problem 3 (15pts) Let S be a set of n segments in \mathbb{R}^{2}. Preprocess S into a data structure of size $O\left(n^{2}\right)$ so that for a query line ℓ, the number of segments of S intersecting ℓ can be computed in $O(\log n)$ time. Show that the data structure can be constructed in $O\left(n^{2} \log n\right)$ time. (Hint: Use duality.)

Problem 4 (20pts) Let S be a set of n segments in \mathbb{R}^{2}, let W be a vertical strip that contains all segments of S, and let $\chi(S)$ be the number of intersection points in S. Show that:
(i) If the endpoints of S lie on the boundary of W, then $\chi(S)$ can be computed in $O(n \log n)$ time.
(ii) If m of the segments in S have their endpoints lying in the interior of W, then $\chi(S)$ can be computed in $O\left(\left(m^{2}+n\right) \log n\right)$ time. (Hint: Use the solution to Problem 3)
(iii) Use (i) and (ii) to show that $\chi(S)$ can be computed in $O\left(n^{4 / 3} \log n\right)$ time. (Hint: Use the cutting theoream.)

