
SIAM J. ALG. DISC. METH.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
016

AMORTIZED COMPUTATIONAL COMPLEXITY*

ROBERT ENDRE TARJANt

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain "self-adjusting" data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05

1. Introduction. Webster’s [34] defines "amortize" as "to put money aside at
intervals, as in a sinking fund, for gradual payment of (a debt, etc.)." We shall adapt
this term to computational complexity, meaning by it "to average over time" or, more
precisely, "to average the running times of operations in a sequence over the sequence."
The following observation motivates our study of amortization: In many uses of data
structures, a sequence of operations, rather than just a single operation, is performed,
and we are interested in the total time of the sequence, rather than in the times of
the individual operations. A worst-case analysis, in which we sum the worst-case times
of the individual operations, may be unduly pessimistic, because it ignores correlated
effects of the operations on the data structure. On the other hand, an average-case
analysis may be inaccurate, since the probabilistic assumptions needed to carry out
the analysis may be false. In such a situation, an amortized analysis, in which we
average the running time per operation over a (worst-case) sequence of operations,
can yield an answer that is both realistic and robust.

To make the idea of amortization and the motivation behind it more concrete,
let us consider a very simple example. Consider the manipulation of a stack by a
sequence of operations composed of two kinds of unit-time primitives: push, which
adds a new item to the top of the stack, and pop, which removes and returns the top
item on the stack. We wish to analyze the running time of a sequence of operations,
each composed of zero or more pops followed by a push. Assume we start with an
empty stack and carry out m such operations. A single operation in the sequence can
take up to m time units, as happens if each of the first m- 1 operations performs no
pops and the last operation performs m 1 pops. However, altogether the m operations
can perform at most 2m pushes and pops, since there are only m pushes altogether
and each pop must correspond to an earlier push.

This example may seem too simple to be useful, but such stack manipulation
indeed occurs in applications as diverse as planarity-testing [14] and related problems
[24] and linear-time string matching [18]. In this paper we shall survey a number of
settings in which amortization is useful. Not only does amortized running time provide
a more exact way to measure the running time of known algorithms, but it suggests
that there may be new algorithms efficient in an amortized rather than a worst-case
sense. As we shall see, such algorithms do exist, and they are simpler, more efficient,
and more flexible than their worst-case cousins.

* Received by the editors December 29, 1983. This work was presented at the SIAM Second Conference
on the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

t Bell Laboratories, Murray Hill, New Jersey 07974.

306



AMORTIZED COMPUTATIONAL COMPLEXITY 307

The paper contains five sections. In 2 we develop a theoretical framework for
analyzing the amortized running time of operations on a data structure. In 3 we
study three uses of, amortization in the analysis of known algorithms. In 4 we discuss
two ntew data structures specifically designed to have good amortized efficiency. Section
5 contains conclusions.

2. Two views of amortization. In order to analyze the amortized running time
of operations on a data structure, we need a technique for averaging over time. In
general, on data structures of low amortized complexity, the running times of successive
operations can fluctuate considerably, but only in such a way that the average running
time of an operation in a sequence is small. To analyze such a situation, we must be
able to bound the fluctuations. We shall consider two ways of doing this.

The first is the banker’s view of amortization. We assume that our computer is
coin-operated; inserting a single coin, which we call a credit, causes the machine to
run for a fixed constant amount of time. To each operation we allocate a certain
number of credits, defined to be the amortized time of the operation. Our goal is to
show that all the operations can be performed with the allocated credits, assuming
that we begin with no credits and that unused credits can be carried over to later
operations. If desired we can also allow borrowing of credits, as long as any debt
incurred is eventually paid off out of credits allocated to operations.

Saving credits amounts to averaging forward over time, borrowing to averaging
backward. If we can prove that we never need to borrow credits to complete the
operations, then the actual time of any initial part of a sequence of operations is
bounded by the sum of the corresponding amortized times. If we need to borrow but
such borrowing can be paid off by the end of the sequence, then the total time of the
operations is bounded by the sum of all the amortized times, although in the middle
of the sequence we may be running behind. That is, the current elapsed time may
exceed the sum of the amortized times by the current amount of net borrowing.

In order to keep track of saved or borrowed credits, it is generally convenient to
store them in the data structure. Regions of the structure containing credits are
unusually hard to access or update (the credits saved are there to pay for extra work);
regions containing "debits" are unusually easy to access or update. It is important to
realize that this is only an accounting device; the programs that actually manipulate
the data structure contain no mention of credits or debits.

The banker’s view of amortization was used implicitly by Brown and Tarjan [8]
in analyzing the amortized complexity of 2, 3 trees and was developed more fully by
Huddleston and Mehlhorn [15], [16] in their analysis of generalized B-trees. We can
cast our analysis of a stack in the banker’s framework by allocating two credits per
operation. The stack manipulation maintains the invariant that the number of saved
credits equals the number of stacked items. During an operation, each pop is paid for
by a saved credit, the push is paid for by one of the allocated credits, and the other
allocated credit is saved, corresponding to the item stacked by the push.

Our second view of amortization is that of the physicist. We define a potential
function d that maps any configuration D of the data structure into a real number
(D) called the potential of D. We define the amortized time of an operation to be
+(D’)-(D), where is the actual time of the operation and D and D’ are the

configurations of the data structure before and after the operation, respectively. With
this definition we have the following equality for any sequence of m operations:

Y. ti (ai-i+i_)=o-,,+ a,
i=1 i=1 i=1



308 ROBERT ENDRE TARJAN

where ti and ai are the actual and amortized times of the ith operation, respectively,
is the potential after the ith operation, and o is the potential before the first

operation. That is, the total time of the operations equals the sum of their amortized
times plus the net decrease in potential from the initial to the final configuration.

We are free to choose the potential function in any way we wish; the more astute
the choice, the more informative the amortized times will be. In most cases of interest,
the initial potential is zero and the potential is always nonnegative. In such a situation
the total amortized time is an upper bound on the total time. (This corresponds to
the banker’s view of amortization with no borrowing.)

The physicist’s view of amortization was proposed by D. Sleator (private communi-
cation). To fit the stack manipulation example into the physicist’s framework, we define
the potential of a stack to be the number of items it contains. Then a stack operation
consisting of k pops and one push on a stack initially containing items has an amortized
time of (k + 1) / (i k / 1) 2. The initial potential is zero and the potential is
always nonnegative, so rn operations take at most 2m pushes and pops.

The banker’s and physicist’s views of amortization are entirely equivalent; we can
choose whichever view gives us more intuition about the problem at hand. It is perhaps
more natural to deal with fractional amounts of time using the physicist’s view, whereas
the banker’s view is more concrete, but both will yield the same bounds.

3. Amortized analysis of known algorithms. Amortization has been used in the
analysis of several algorithms more complicated than the stack manipulation example.
In this section we shall examine three such applications. We study the examples in the
order of their conceptual complexity, which coincidentally happens to be reverse
chronological order.

Our first example is the "move-to-front" list updating heuristic. Consider an
abstract data structure consisting of a table of n items, under the operation of accessing
a specified item. We assume that the table is represented by a linear list of the
items in arbitrary order, and that the time to access the ith item in the list is i. In
addition, we allow the possibility of rearranging the list at any time (except in the
middle of an access), by swapping any pair of contiguous items. Such a swap takes one
unit of time.

We are interested in whether swapping can reduce the time for a sequence of
accesses, and whether there is a simple heuristic for swapping that achieves whatever
improvement is possible. These questions are only interesting if the access sequence
is nonuniform, e.g. some items are accessed more frequently than others, or there is
some correlation between successive accesses. Among the swapping heuristics that
have been proposed are the following:

Move-to-front. After an access, move the accessed item to the front of the list,
without changing the relative order of the other items.

Transpose. After an access of any item other than the first on the list, move the
accessed item one position forward in the list by swapping it with its predecessor.

Frequency count. Swap after each access as necessary to maintain the items in
non-decreasing order by cumulative access frequency.

The frequency count heuristic requires keeping track of access frequencies, whereas
the other two rules depend only on the current access. There has been much research
on these and similar update rules, the overwhelming majority of it average-case analysis
[6], [7], [17], [23], [26]. All of the average-case studies known to the author are based
on the assumption that the accesses are independent identically distributed random
variables, i.e. for each successive access, each item has a fixed probability p of being
accessed. The usual measure of interest is the asymptotic average access time as a



AMORTIZED COMPUTATIONAL COMPLEXITY 309

function of p, P2,""", Pn, i.e. the average access time as m, the number of accesses,
goes to infinity. (Letting m go to infinity eliminates the effect of the initial ordering.)

Under these assumptions, the optimum strategy is to begin with the items in
nondecreasing order by probability and leave them that way. The law of large numbers
implies that the asymptotic average access time of the frequency count heuristic is
minimum, and it has long been known that move-to-front is within a factor of two of
minimum [17]. Rivest [23] showed that asymptotically transpose is never worse than
move-to-front, although Bitner [7] showed that it converges much more slowly to its
asymptotic behavior.

Bentley and McGeogh [6] performed several experiments on real data. Their tests
indicate that in practice the transpose heuristic is inferior to frequency count but
move-to-front is competitive with frequency count and sometimes better. This suggests
that real access sequences have a locality of reference that is not captured by the
standard probabilistic model, but that significantly affects the efficiency of the various
heuristics. In an attempt to derive more meaningful theoretical results, Bentley and
McGeogh did an amortized analysis. Consider any sequence of accesses. Among static
access strategies (those that never reorder the list), the strategy that minimizes the
total access time is that of beginning with the items in decreasing order by total access
frequency. Bentley and McGeogh showed that the total access time of move-to-front
is within a factor of two of that of the optimum static strategy, if move-to-front’s initial
list contains the items in order of first access. Furthermore frequency count but not
transpose shares this property.

(Note that the move-to-front heuristic spends only about half its time doing
accesses; the remainder is time spent on the swaps that move accessed items to the
front of the list. Including swaps, the total time of move-to-front is at most four times
the total time of the optimum static algorithm.)

Sleator and Tarjan [26], using the approach presented in 2, extended Bentley
and McGeogh’s results to allow comparison between arbitrary dynamic strategies. In
particular, they showed that for any initial list and any access sequence, the total time
of move-to-front is within a constant factor (four) of minimum over all algorithms,
including those with arbitrary swapping. Thus move-to-front is optimum in a very
strong, uniform sense (to within a constant factor on any access sequence). Neither
transpose nor frequency count shares this property.

To obtain the Sleator-Tarjan result we use the physicist’s view of amortization.
Consider running an arbitrary algorithm A and the move-to-front heuristic MTF in
parallel on an arbitrary access sequence, starting with the same initial list for both
methods. Define the potential of MTF’s list to be the number of inversions in MTF’s
list with respect to A’s list, where an inversion is a pair of items whose order is different
in the two lists. The potential is initially zero and always nonnegative. It is straightfor-
ward to show that, with this definition of potential, the amortized time spent by MTF
on any access is at most four times the actual time spent by A on the access.

The factor of four bound can be refined and extended to allow A and MTF to
have different initial lists and to allow the access cost to be a nonlinear function of list
position. The problem of minimizing page faults, which is essentially a version of list
updating with a nonlinear access cost, can also be analyzed using amortization. Sleator
and Tarjan’s paper [26] contains the details.
Another use of amortization is in the analysis of insertion and deletion in balanced

search trees. A balanced search tree is another way of representing a table, more
complicated than a linear list but with faster access time. Extensive discussions of
search trees can be found in many computer science texts (e.g. [2], [17], [32]), and
we shall assume some familiarity with their properties. Generally speaking, a table



310 ROBERT ENDRE TARJAN

can be stored as a search tree if the items can be totally ordered, e.g. the items are
real numbers, which are orderable numerically, or strings, which are orderable
lexicographically. We store the items in the nodes of a tree in symmetric order.
Depending upon the exact scheme used, the items may be stored in either the internal
or the external nodes, with one or several items per node. We access an item by
following the path from the tree root to the node containing the item. Thus the time
to access an item is proportional to the depth in the tree of the node containing it.

Balanced search trees are constrained by some sort of local balance condition so
that the depth of an n-node tree, and thus the worst-case access time, is O(log n).
Typical kinds of balanced trees include AVL or height-balanced trees [1], trees of
bounded balance or weight-balanced trees [21 ], and various kinds of a, b trees including
2, 3 trees [2] and B-trees [5]]. (In an a, b tree for integers a and b such that 2 =< a =< b/2 ],
all external nodes have the same depth, and every internal node has at least a and at
most b children, except the root, which if internal has at least two and at most b
children.) Indeed, the varieties of balanced trees are almost endless.

Maintaining a dynamic table (i.e. a table subject to insertions and deletions) as a
balanced search tree requires storing local "balance information" at each tree node
and, based on the balance information, rebalancing the tree using local transformations
after each insertion or deletion. For standard kinds of balanced trees, the update
transformations all take place along a single path in the tree, and the worst-case time
for an insertion or deletion is O(log n). For some kinds of balanced search trees,
however, the amortized update time is O(1). Brown and Tarjan [8] showed that m
consecutive insertions or m consecutive deletions in an n-node 2, 3 tree take O(n + m)
total rebalancing time, giving an O(1) amortized time per update if m =f(n). This
bound does not hold for intermixed insertions and deletions unless the insertions and
deletions are far enough apart that they do not interact substantially. Maier and Salveter
[20] and independently Huddleston and Mehlhorn [15, 16] showed that m arbitrarily
intermixed insertions and deletions in an n-node 2, 4 tree, or indeed in an a, b tree
with a-< [b/2], take O(n+ m) total rebalancing time.

To give the flavor of these results, we shall sketch an amortized analysis of insertions
in balanced binary trees [31], [32], also known as "symmetric binary B-trees" .[4],
"red-black trees" [13], or "half-balanced trees" [22]. (See Fig. 1.) A balanced binary
tree is a binary tree (each internal node has exactly two children: a left child and a
right child) in which each internal node is colored either red or black, such that

(i) all paths from the root to an external node contain the same number of black
nodes, and

(ii) any red node has a black parent. (In particular, the root, if internal, is black.)
Balanced binary trees are equivalent to 2, 4 trees: we obtain the 2, 4 tree

corresponding to a balanced binary tree by contracting every red node into its parent.

FIG. 1. A balanced binary tree. Circles are internal nodes; squares are external, lnternal nodes are solid

if black, hollow if red.



AMORTIZED COMPUTATIONAL COMPLEXITY 31

FIG. 2. Correspondence between nodes of a 2, 4 tree and nodes of a balanced binary tree.
(a) 2-node.
(b) 3-node.
(c) 4-node.

(See Fig. 2.) This correspondence is not one-to-one: a 2, 4 tree can correspond to
several different balanced binary trees, because there are two different configurations
corresponding to a 3-node (a node with three children).

We shall not go into the details of how a table can be represented by a balanced
binary tree and why the depth of an n-node balanced binary tree is O(log n). (See
[4], [13], [22], [31], [32].) For our purposes it suffices to know that the effect of an
insertion is to convert some external node into a red internal node with two external
children. This may produce a violation of property (ii). To restore (ii), we walk up
the path from the violation, repeatedly applying the appropriate case from among the
five cases illustrated in Figs. 3 and 4. Cases 2a, b, c are terminating: applying either
of them restores (ii). Cases la, b are (possibly) nonterminating: after applying either
of them we must look for a new violation.

Ca)

A B A B

(b) --Y

B C B C

FIG. 3. Nonterminating cases of a balanced binary tree insertion. Triangles denote subtrees whose root is
either black or external Node z may or may not be the root. Each case has a symmetric variant, not shown.
After applying either case, we must check whether the parent of z is red.

(a) Case la: color flip.
(b) Case lb: color flip.

The net effect of rebalancing is to change the color of one or more nodes and
possibly to change the structure of the tree by a "single rotation" (Case 2b) or a
"double rotation" (Case 2c). We can prove that the total time for m consecutive
insertions in a tree of n-nodes is O(n + m) by using the banker’s view of amortization.
We maintain the invariant that every black node contains either 0, 1, or 2 credits,
depending on whether it has one red child, no red children, or two red children,
respectively. To satisfy the invariant initially we must add O(n) credits to the tree.



312 ROBERT ENDRE TARJAN

A B A B

(C)y
A B C D

B C

FIG. 4. Terminating cases of a balanced binary tree insertion. Each case has a symmetric variant, not
shown.

(a) Case 2a: color change at the root.
(b) Case 2b: single rotation.
(c) Case 2c: double rotation.

(This accounts for the O(n) term in the bound.) Each of Cases 2a, b, c requires the
addition of O(1) credits to the tree, but such a case terminates an insertion. Each of
Cases l a, b, if nonterminating, releases a credit from the tree to pay for the transfor-
mation.

This argument is an adaption of those in [15], [16], [20]. It is not hard to extend
the argument to prove an O(n + rn) time bound for arbitrarily intermixed insertions
and deletions if the deletion algorithm is suitable. (See [31], [32] for a suitable deletion
algorithm.)

The O(n + m) bound on update time does not take into account the time necessary
to search for the positions at which the insertions and deletions are to take place. The
practical importance of this bound is in situations where the search time is significantly
faster than O(log n), as can occur if the search tree is augmented to allow searching
from "fingers" [8], [12], [16], [19]. Search trees with fingers provide one way to take
advantage of locality of reference in an access sequence, and a generalization of the
argument we have sketched shows that in appropriate kinds of balanced trees with
fingers, the total rebalancing time is bounded by a constant factor times the total search
time, if we perform an arbitrary sequence of intermixed accesses, insertions, and
deletions [16]. Brown and Tarjan [8] list several applications of such trees. The
amortized approach to fingers [8], [16] is significantly simpler than the worst-case
approach [12], [19].

Our third and most complicated example of amortization is in the analysis of path
compression heuristics for the disjoint set union problem, sometimes called the "union-
find problem" or the "equivalence problem." We shall formulate this problem as
follows. We wish to represent a collection of disjoint sets, each with a distinguishing
name, under two kinds of operations"

find (x): Return the name of the set containing element x.
unite (A, B): Form the union of the two sets named A and B, naming the

new set A. This operation destroys the old sets named A and B.

We shall assume that the initial sets are all singletons. To solve this problem, we
represent each set by a tree whose nodes are the elements in the set. Each node points
to its parent; the root contains the set name. To carry out find (x), we follow the path



AMORTIZED COMPUTATIONAL COMPLEXITY 313

of parent pointers from x to the root of the tree containing it, and return the name
stored there. To carry out unite (A, B), we locate the nodes containing the names A
and B and make one the parent of the other, moving the name A to the new root if
necessary.

This basic method is not very efficient; a sequence of m operations beginning with
n singleton sets can take O(nm) time, for an amortized bound of O(n) per operation.
We can improve the method considerably by adding heuristics to the find and unite
algorithms to reduce the tree depths. When performing unite, we use union by size,
making the root of the smaller tree point to the root of the larger. After performing
find (x), we use path compression, changing the parent of x and all its ancestors except
the tree root to be the root. (See Fig. 5.)

IAI<IBI

OR

IAI>IBI

(b) A,/

FIG. 5. Implementation of set operations. Triangles denote subtrees.
a unite A, B

Union by size was proposed by Galler and Fischer [11]; Mcllroy and Morris
devised path compression [2]. The set union algorithm with both heuristics is extremely
hard to analyze. Tarjan [29] derived an O(ma(m, n)) bound for m operations starting
with n singletons, assuming m =12(n). Here a is a functional inverse of Ackermann’s
function. Tarjan’s proof is a complicated amortized analysis that uses debits as well
as credits. For a version of the proof in the banker’s framework see [32]. The bound-
is tight to within a constant factor in the worst case for a large class of pointer
multiplication algorithms [30]. Tarjan and van Leeuwen [33] extended the bound to
allow values of m much smaller than n (the generalized bound is O(n + ma(n + m, n)))
and to cover a variant of union by size and several variants of path compression.
Recently Gabow and Tarjan [10] found a linear-time algorithm for a special case of
disjoint set union in which there is appropriate advance knowledge about the unions.
Their algorithm combines path compression with table look-up on small sets and
requires the power of a random access machine. The method apparently does not
extend to the general problem.

4. New "sell-adjusting" data structures. Data structures efficient in the worst
case, such as the various kinds of balanced trees, have several disadvantages. The
maintenance of a structural constraint, such as a balance condition, consumes both
storage space (though possibly only one bit per node) and running time. Restructuring



314 ROBERT ENDRE TARJAN

after an update tends to be complicated, involving a number of cases. Perhaps more
significantly, such data structures are inflexible in that they cannot take advantage of
whatever nonuniformity there may be in the usage pattern.

The idea of amortization suggests another way to design data structures. Each
time we access the structure, we modify it in a simple, uniform way, with the intent
of decreasing the time required for future operations. This approach can produce a
data structure with very simple access and update procedures that needs no extra
storage for structural information and adapts to fit the usage pattern. An example of
such a data structure is a linear list with the move-to-front rule, studied in 3. Previous
authors have used the term "self-organizing" for such data structures. We shall call
them self-adjusting. In this section we describe two self-adjusting data structures
recently invented by Sleator and Tarjan [25], [27], [28].

The first structure, the skew heap, is for the representation of meldable heaps,
also called "priority queues" [17] and "mergable heaps" [2]. Suppose we wish to
maintain a collection of disjoint sets called heaps, each initially containing a single
element selected from a totally ordered universe, under two operations:

delete min h
meld (hi, he):

Delete and return the minimum element in heap h.
Add all elements in heap h2 to hi, destroying h2.

To represent a heap, we use a binary tree, each internal node of which is a heap
element. We arrange the elements in heap order: the parent of any node is smaller
than the node itself. Thus the root of the tree is the smallest element. Melding is the
fundamental operation. We carry out delete rain (h) by deleting the root of h, replacing
h by the meld of its left and right subtrees, and returning the deleted node. We carry
out meld (hi, h2) by walking down the right paths from the roots of h and h2, merging
them. The left subtrees of nodes along these paths are unaffected by the merge. The
merge creates a potentially long right path in the new tree. As a heuristic to keep
right paths short, we conclude the meld by swapping left and right children of all nodes
except the deepest along the merge path. (See Fig. 6.) We call the resulting data
structure a skew heap.

Skew heaps are a self-adjusting version of the leftist queues of Crane [9] and
Knuth [17]; leftist queues are heap-ordered binary trees maintained so that the right
path down from any node is a shortest path to an external node. In skew heaps, the
amortized times of delete rain and meld are O(log n), where n is the total number of
elements in the heap or heaps involved. To prove this, we define the weight of an
internal node x to be the total number of its internal node descendants, including x
itself. We define a node x to be heavy if it is not a root and its weight is more than
half the weight of its parent. We maintain the invariant that every heavy right child
has a credit. An analysis of the effect of delete min and meld gives the O(log n) bound
[25], [27].

Skew heaps require only a single top-down pass for melding, in contrast to leftist
heaps, which need a top-down pass followed by a bottom-up pass. If we modify skew
heaps so that melding is bottom-up, we can reduce the amortized time for meld to
O(1) while retaining the O(log n) bound for delete rain. In an amortized sense, to
within a constant factor, bottom-up skew heaps are optimum among all comparison-
based methods for representing heaps. Preliminary experiments indicate that they are
efficient in practice as well as in theory. For details of these results, see [27].

Our second structure, the splay tree, is a self-adjusting form of binary search tree.
Consider the table look-up problem that we solved in 2 using a self-adjusting list.
As discussed in 3, if the items are totally orderable, we can also represent such a



AMORTIZED COMPUTATIONAL COMPLEXITY 315

FIG. 6. A meld of two skew heaps. External nodes are not shown.
(a) Merge of the right paths.
(b) Swapping of children along the path formed by the merge.

table by a binary tree: Each item is an internal node of the tree, with items arranged
in symmetric order" for any item x, all items in its left subtree are less than x and all
items in its right subtree are greater than x. To access an item x, we compare x to the
tree root, stop if the root is x, and otherwise proceed recursively in the left subtree if
x is less than the root, in the right subtree if x is greater than the root. The time to
access x is proportional to its depth in the tree.

As a heuristic to keep the tree depth small, each time we access a node x we splay
it. To splay x, we repeatedly apply the appropriate one of the cases among those in
Fig. 7, continuing until x is the root of the tree. In effect, we walk up the path from
x two nodes at a time, performing rotations as we go up that move x to the root and
move the rest of the nodes on the access path about halfway or more toward the root.
(See Fig. 8.) We call the resulting data structure a splay tree.

The amortized time of an access in an n-node splay tree is O(log n). To prove
this, we define the potential of a splay tree to be the sum over all internal nodes x of
log w(x), where w(x) is the weight of x, defined to be the number of (internal node)
descendants of x, including x itself. The algorithm and the analysis extend to handle
insertion, deletion, and more drastic update operations. Several variants of the splay
heuristic have the same efficiency (to within a constant factor) [25], [27]. Several
heuristics for search trees proposed earlier [3], [7] are not as efficient in an amortized
sense.

Splay trees are not only as efficient in an amortized sense as balanced trees, but
also as efficient as static optimum search trees, as an extension of the analysis shows.
In this they are like lists with move-to-front updating; they automatically adapt to fit
the access frequencies. The result showing that splay trees are as efficient as optimum



316 ROBERT ENDRE TARJAN

(a)

A B B C

(b)

A B C D

(c)

A B C D

B C

FIG 7. Case of splay step at node x. Each case has a symmetric variant (not shown). In cases (b) and
(c), if node z is not the root, the splay continues after the step.

(a) Terminating single rotation. Node y is the root.
(b) Two single rotations.
(c) Double rotation.

c D
E F

FIG. 8. Splay at node a.

trees is analogous to Bentley and McGeough’s result comparing move-to-front with
an optimum static ordering. We conjecture that a stronger result analogous to Sleator
and Tarjan’s result for move-to-front holds; namely splay trees minimize the amortized
access time to within a constant factor among all search-tree-based algorithms. We
are currently attempting to prove an appropriate formalization of this conjecture. As
a special case, the truth of the conjecture would imply that splay trees are as efficient
as the finger search trees mentioned in 3, and thus that one can obtain the advantages
of fingers using an ordinary search tree, without extra pointers. Details of the properties
of splay trees and several applications to more elaborate self-adjusting data structures
appear in [27].



AMORTIZED COMPUTATIONAL COMPLEXITY 317

5. Conclusions. We have seen that amortization is a powerful tool in the algorith-
mic analysis of data structures. Not only does it allow us to derive tighter bounds for
known algorithms, but it suggests a methodology for algorithm development that leads
to new simple, efficient, and flexible "self-adjusting" data structures. Amortization
also provides a robust way to study the possible optimality of various data structures.
It seems likely that amortization will find many more uses in the future.

REFERENCES

[1] G. M. ADELSON-VELSKII AqD E. M. LANDIS, An algorithm for the organization of information,
Soviet Math. Dokl., 3 (1962), pp. 1259-1262.

[2] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] B. ALLEN AND I. MUqRO, Self-organizing search trees, J. ACM, 25 (1978), pp. 526-535.
[4] R. BAYER, Symmetric binary B-trees: data structure and maintenance algorithms, Acta. Inform.,

(1972), pp. 290-306.
[5] R. BAYER AND E. MCCREIGHT, Organization of large ordered indexes, Acta Inform., (1972), pp.

173-189.
[6] J. L. BENTLEY AND C. MCGEOGH, Worst-case analysis of self-organizing sequential search heuristics,

Proc. 20th Allerton Conference on Communication, Control, and Computing, to appear.
[7] J. R. BITNER, Heuristics that dynamically organize data structures, SIAM J. Comput., 8 (1979), pp.

82-110.
[8] M. R. BROWN AND R. E. TARJAN, Design and analysis of a data structure ]’or representing sorted

lists, SIAM J. Comput., 9 (1980), pp. 594-614.
[9] C. A. CRANE, Linear lists and priority queues as balanced binary trees, Technical Report STAN-CS-72-

259, Computer Science Dept., Stanford University, Stanford, CA, 1972.
[10] H. N. GABOW AND R. E. TARJAN, A linear-time algorithm for a special case of disjoint set union, J.

Comput. Sys. Sci., submitted.
[11] B. A. GALLER AqD M. J. FISCHER, An improved equivalence algorithm, Comm. ACM, 7 (1964),

pp. 301-303.
[12] L. J. GUmAS, E. M. MCCREIGHT, M. F. PLASS AND J. R. ROBERTS, A new representation for linear

lists, Proc. Ninth Annual ACM Symposium on Theory of Computing, 1977, pp. 49-60.
[13] L. J. GUIBAS AND R. SEDGEWICK, A dichromatic framework for balanced trees, Proc. Nineteenth

Annual IEEE Symposium on Foundations of Computer Science, 1978, pp. 8-21.
[14] J. HOPCROFT AND R. TARJAN, Efficient planarity testing, J. ACM, 21 (1974), pp. 549-568.
[15] S. HUDDLESTON AND K. MEHLHORN, Robust balancing in B-trees, Proc. 5th GI-Conference on

Theoretical Computer Science, Lecture Notes in Computer Science 104, Springer-Verlag, New
York, 1981, pp. 234-244.

[16] S. HUDDLESTON AND K. MEHLHORN, A new data structure for representing sorted lists, Acta Inform.,
17 (1982), pp. 157-184.

[17] D. E. KNUTH, The Art of Computer Programing, Vol. 3: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

[18] D. E. KNUTH, J. H. MORRIS JR. AND V. R. PRATT, Fast pattern matching in strings, SIAM J. Comput.,
6 (1977), pp. 323-350.

[19] S. R. KOSARAJU, Localized search in sorted lists, Proc. Thirteenth Annual ACM Symposium on Theory
of Computing, 1978, pp. 62-69.

[20] O. MAIER AND S. C. SALVETER, Hysterical B-trees, Inform. Proc. Letters, 12 (1981), pp. 199-202.
[21] J. NIEVERGELT AND E. M. REINGOLD, Binary search trees of bounded balance, SIAM J. Comput.,

2 (1973), pp. 33-43.
[22] H. OLIVIE, A new class of balanced search trees: half-balanced binary search trees, RAIRO Inform.

th6orique/Theoretical Informatics, 6 (1982), pp. 51-71.
[23] R. RIVEST, On self-organizing sequential search heuristics, Comm. ACM, 19 (1976), pp. 63-67.
[24] P. ROSENSTIEHL AND R. E. TARJAN, Gauss codes, planar Hamiltonian graphs, and stack-sortable

permutations, J. Algorithms, to appear.
[25] O. D. SLEATOR AND R. E. TARJAN, Self-adjusting binary trees, Proc. Fifteenth Annual ACM

Symposium on Theory of Computing, 1983, pp. 235-245.
[26] ., Amortized efficiency of list update and paging rules, Comm. ACM, to appear.



318 ROBERT ENDRE TARJAN

[27] D. D. SLEATOR AND R. E. TARJAN, Self-adjusting heaps, SIAM J. Comput., 15 (1986), to appear.
[28], Self-adjusting binary search trees, to appear.
[29] R. E. TARJAN, Efficiency ofa good but not linear set union algorithm, J. ACM, 22 (1975), pp. 215-225.
[30], A class of algorithms which require nonlinear time to maintain disjoint sets, J. Comput. Sys.

Sci., 18 (1979), pp. 110-227.
31] ., Updating a balanced search tree in O(1) rotations, Inform. Proc. Letters, 16 (1983), pp. 253-257.
[32], Data Structures and Network Algorithms, CBMS Regional Conference Series in Applied

Mathematics 44, Society for Industrial and Applied Mathematics, Philadelphia, 1983.
[33] R. E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis of set union algorithms, J. ACM, to appear.
[34] Webster’s New World Dictionary of the American Language, College Edition, World, Cleveland, Ohio,

1964.


