CPS 296.1
Learning in games

Vincent Conitzer
conitzer@cs.duke.edu
“2/3 of the average” game

- Everyone writes down a number between 0 and 100
- Person closest to 2/3 of the average wins

Example:
- A says 50
- B says 10
- C says 90
- Average(50, 10, 90) = 50
- 2/3 of average = 33.33
- A is closest (|50-33.33| = 16.67), so A wins
“2/3 of the average” game revisited

\[
\begin{align*}
(2/3) \times 100 & \quad \text{dominated} \\
(2/3) \times (2/3) \times 100 & \quad \text{dominated after removal of (originally) dominated strategies} \\
\ldots & \\
0 &
\end{align*}
\]
Learning in (normal-form) games

• Approach we have taken so far when playing a game: just compute an optimal/equilibrium strategy

• Another approach: learn how to play a game by
 – playing it many times, and
 – updating your strategy based on experience

• Why?
 – Some of the game’s utilities (especially the other players’) may be unknown to you
 – The other players may not be playing an equilibrium strategy
 – Computing an optimal strategy can be hard
 – Learning is what humans typically do
 – ...

• Learning strategies ~ strategies for the repeated game
• Does learning converge to equilibrium?
Iterated best response

- In the first round, play something arbitrary.
- In each following round, play a best response against what the other players played in the previous round.
- If all players play this, it can converge (i.e., we reach an equilibrium) or cycle.

\[
\begin{array}{ccc}
0, 0 & -1, 1 & 1, -1 \\
1, -1 & 0, 0 & -1, 1 \\
-1, 1 & 1, -1 & 0, 0 \\
\end{array}
\]

(a simple congestion game)

- Alternating best response: players alternatingly change strategies: one player best-responds each odd round, the other best-responds each even round.
Fictitious play [Brown 1951]

- In the first round, play something arbitrary
- In each following round, play a best response against the empirical distribution of the other players’ play
 - I.e., as if other player randomly selects from his past actions
- Again, if this converges, we have a Nash equilibrium
- Can still fail to converge…

<table>
<thead>
<tr>
<th></th>
<th>0, 0</th>
<th>-1, 1</th>
<th>1, -1</th>
<th>1, -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1, 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, -1</td>
<td>0, 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

rock-paper-scissors

<table>
<thead>
<tr>
<th>-1, -1</th>
<th>0, 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

a simple congestion game
Fictitious play on rock-paper-scissors

<table>
<thead>
<tr>
<th></th>
<th>Row</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

30% R, 50% P, 20% S
30% R, 20% P, 50% S
Does the empirical distribution of play converge to equilibrium?

• … for iterated best response?
• … for fictitious play?

<table>
<thead>
<tr>
<th>3, 0</th>
<th>1, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>2, 1</td>
</tr>
</tbody>
</table>
Fictitious play is guaranteed to converge in…

• Two-player zero-sum games [Robinson 1951]
• Generic 2x2 games [Miyasawa 1961]
• Games solvable by iterated strict dominance [Nachbar 1990]
• Weighted potential games [Monderer & Shapley 1996]
• **Not** in general [Shapley 1964]
• But, fictitious play always converges to the set of ½-approximate equilibria [Conitzer 2009; more detailed analysis by Goldberg, Savani, Sørensen, Ventre 2011]
Shapley’s game on which fictitious play does not converge

- starting with \((U, M)\):

<table>
<thead>
<tr>
<th></th>
<th>0, 0</th>
<th>0, 1</th>
<th>1, 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>1, 0</td>
<td>0, 0</td>
<td>0, 1</td>
</tr>
<tr>
<td>1, 0</td>
<td>0, 1</td>
<td>1, 0</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Regret

- For each player i, action a_i and time t, define the regret $r_i(a_i, t)$ as
 $$ \frac{\sum_{1 \leq t' \leq t-1} u_i(a_i, a_{-i}, t') - u_i(a_i, t', a_{-i}, t'))}{(t-1)} $$

- An algorithm has zero regret if for each a_i, the regret for a_i becomes nonpositive as t goes to infinity (almost surely) against any opponents.

- Regret matching [Hart & Mas-Colell 00]: at time t, play an action that has positive regret $r_i(a_i, t)$ with probability proportional to $r_i(a_i, t)$
 - If none of the actions have positive regret, play uniformly at random.

- Regret matching has zero regret.

- If all players use regret matching, then play converges to the set of weak correlated equilibria
 - Weak correlated equilibrium: playing according to joint distribution is at least as good as any strategy that does not depend on the signal.

- Variants of this converge to the set of correlated equilibria.

- Smooth fictitious play [Fudenberg & Levine 95] also gives no regret.
 - Instead of just best-responding to history, assign some small value to having a more “mixed” distribution.
Targeted learning

- Assume that there is a **limited** set of possible opponents
- Try to do well against these
- Example: is there a learning algorithm that
 - learns to best-respond against any stationary opponent (one that always plays the same mixed strategy), and
 - converges to a Nash equilibrium (in actual strategies, not historical distribution) when playing against a copy of itself (so-called **self-play**)?

- [Bowling and Veloso AIJ02]: yes, if it is a 2-player 2x2 game and mixed strategies are observable
- [Conitzer and Sandholm ML06]: yes (without those assumptions)
 - AWESOME algorithm (Adapt When Everybody is Stationary, Otherwise Move to Equilibrium): (very) rough sketch:
“Teaching”

- Suppose you are playing against a player that uses one of these strategies
 - Fictitious play, anything with no regret, AWESOME, …
- Also suppose you are very patient, i.e., you only care about what happens in the long run
- How will you (the row player) play in the following repeated games?
 - Hint: the other player will eventually best-respond to whatever you do

<table>
<thead>
<tr>
<th></th>
<th>4, 4</th>
<th>3, 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 3</td>
<td>0, 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1, 0</th>
<th>3, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 1</td>
<td>4, 0</td>
<td></td>
</tr>
</tbody>
</table>

- Note relationship to optimal strategies to commit to
- There is some work on learning strategies that are in equilibrium with each other [Brafman & Tennenholtz AIJ04]
Evolutionary game theory

- Given: a symmetric game

<table>
<thead>
<tr>
<th></th>
<th>dove</th>
<th>hawk</th>
</tr>
</thead>
<tbody>
<tr>
<td>dove</td>
<td>1, 1</td>
<td>0, 2</td>
</tr>
<tr>
<td>hawk</td>
<td>2, 0</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

Nash equilibria: (d, h), (h, d), ((.5, .5), (.5, .5))

- A large population of players plays this game, players are randomly matched to play with each other

- Each player plays a pure strategy
 - Fraction of players playing strategy $s = p_s$
 - p is vector of all fractions p_s (the state)

- Utility for playing s is $u(s, p) = \Sigma_s p_s u(s, s')$

- Players reproduce at a rate that is proportional to their utility, their offspring play the same strategy
 - Replicator dynamic

$$\frac{dp_s(t)}{dt} = p_s(t)(u(s, p(t)) - \Sigma_s p_s u(s', p(t)))$$

- What are the steady states of this?
Stability

<table>
<thead>
<tr>
<th>dove</th>
<th>hawk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 1</td>
<td>0, 2</td>
</tr>
<tr>
<td>2, 0</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

- A steady state is **stable** if slightly perturbing the state will not cause us to move far away from the state.
- E.g. everyone playing dove is not stable, because if a few hawks are added their percentage will grow.
- What about the mixed steady state?
- Proposition: every stable steady state is a Nash equilibrium of the symmetric game.
- Slightly stronger criterion: a state is **asymptotically stable** if it is stable, and after slightly perturbing this state, we will (in the limit) return to this state.
Evolutionarily stable strategies

- Now suppose players play **mixed** strategies
- A (single) mixed strategy \(\sigma \) is **evolutionarily stable** if the following is true:
 - Suppose all players play \(\sigma \)
 - Then, whenever a very small number of **invaders** enters that play a different strategy \(\sigma' \),
 - the players playing \(\sigma \) must get strictly **higher** utility than those playing \(\sigma' \) (i.e., \(\sigma \) must be able to **repel invaders**)
- \(\sigma \) will be evolutionarily stable if and only if for all \(\sigma' \)
 - \(u(\sigma, \sigma) > u(\sigma', \sigma) \), or:
 - \(u(\sigma, \sigma) = u(\sigma', \sigma) \) and \(u(\sigma, \sigma') > u(\sigma', \sigma') \)
- **Proposition:** every evolutionarily stable strategy is asymptotically stable under the replicator dynamic