CPS 296.1
 Brief introduction to linear and mixed integer programming

Vincent Conitzer

Linear programs: example

- We make reproductions of two paintings

maximize $3 x+2 y$

subject to

$4 x+2 y \leqslant 16$

- Painting 1 sells for $\$ 30$, painting $2 x+2 y \leqslant 8$ sells for \$20

$$
x+y \leqslant 5
$$

- Painting 1 requires 4 units of blue, 1 green, 1 red
- Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

 maximize $3 x+2 y$subject to
$4 x+2 y \leqslant 16 \quad 6$
$x+2 y \leqslant 8$
$x+y \leqslant 5$
$x \geqslant 0$
$y \geqslant 0$

Modified LP

maximize $3 x+2 y$
Optimal solution: $x=2.5$,
subject to
$4 x+2 y \leqslant 15$
$x+2 y \leqslant 8$
$x+y \leqslant 5$
$x \geqslant 0$

$$
y=2.5
$$

Solution value $=7.5+5=$ 12.5

Half paintings?
$y \geqslant 0$

Integer (linear) program

maximize $3 x+2 y$

subject to
$4 x+2 y \leqslant 15^{6}$
$x+2 y \leqslant 8$
$x+y \leqslant 5$
$x \geqslant 0$, integer 2
$y \geqslant 0$, integer

$$
0
$$

optimal IP solution: $x=2$,

$$
y=3
$$

(objective 12)
optimal LP solution: $x=2.5$,
$y=2.5$
(objective 12.5)

Mixed integer (linear) program

 maximize $3 x+2 y_{8}$```
subject to
\[
4 x+2 y \leqslant 15
\]
\[
x+2 y \leqslant 8
\]
\[
x+y \leqslant 5
\]
\[
x \geqslant 0
\]
\(y \geqslant 0\), integer
```



## Solving linear/integer programs

- Linear programs can be solved efficiently
- Simplex, ellipsoid, interior point methods...
- (Mixed) integer programs are NP-hard to solve
- Quite easy to model many standard NP-complete problems as integer programs (try it!)
- Search type algorithms such as branch and bound
- Standard packages for solving these
- GNU Linear Programming Kit, CPLEX, ...
- LP relaxation of (M)IP: remove integrality constraints
- Gives upper bound on MIP (~admissible heuristic)

Exercise in modeling: knapsack-type problem

- We arrive in a room full of precious objects
- Can carry only 30 kg out of the room
- Can carry only 20 liters out of the room
- Want to maximize our total value
- Unit of object A: 16kg, 3 liters, sells for $\$ 11$
- There are 3 units available
- Unit of object B: 4kg, 4 liters, sells for \$4
- There are 4 units available
- Unit of object C: 6kg, 3 liters, sells for $\$ 9$ - Only 1 unit available
-What should we take?


## Exercise in modeling: cell phones (set cover)

- We want to have a working phone in every continent (besides Antarctica)
- ... but we want to have as few phones as possible
- Phone A works in NA, SA, Af
- Phone B works in E, Af, As
- Phone C works in NA, Au, E
- Phone D works in SA, As, E
- Phone E works in Af, As, Au
- Phone F works in NA, E


## Exercise in modeling: hot-dog stands

- We have two hot-dog stands to be placed in somewhere along the beach
- We know where the people that like hot dogs are, how far they are willing to walk
- Where do we put our stands to maximize \#hot dogs sold? (price is fixed)

| location: 1 | location: 4 | location: 7 | location: 9 | location: 15 |
| :---: | :---: | :---: | :---: | :---: |
| \#customers: 2 | \#customers: 1 | \#customers: 3 | \#customers: 4 | \#customers: 3 |
| willing to walk: 4 | willing to walk: 2 | willing to walk: 3 | willing to walk: 3 | willing to walk: 2 |

