
Compiler Fall 2011
PRACTICE Final Exam

This is a full length practice final exam. If you want to take it at exam
pace, give yourself 75 minutes to take the entire test. Just like the real exam,
each question has a point value. There are 75 points in the exam, so that you
can pace yourself to average 1 point per minute (some parts will be faster,
some slower).

Questions:

1. Types (25 points)

2. Frame Layout (10 points)

3. Translation to IR (10 points)

4. Register Allocation (15 points)

5. Dataflow Analysis/Optimization (15 points)

6. Domination (10 points)

7. Garbage Collection (15 points)
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Question 1: Types [25 pts]

1. Show the typing derivation for the Tiger statement x := f(r.a) + 3.
You may assume that your initial environment (Γ0) has the following
mappings (in addition to the base Tiger environment):
Γ0(x) = int
Γ0(a) = int
Γ0(r) = Record(a:string, b:int)
Γ0(f) = string → int

Γ0 ` x : int

Γ0 ` f : string→ int

Γ0 ` r : Record(a:string,...)

Γ0 ` r.a : string

Γ0 ` f(r.a) : int Γ0 ` 3 : int

Γ0 ` f(r.a) + 3 : int

Γ0 ` x := f(r.a) + 3 : unit
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2. Fill in the correct premises forthe sub-typing rule for function types.
Then briefly explain why it is correct:

S1 → S2 v T1 → T2

To understand this rule, suppose we have a function f of type S1 → S2, and
want to use it as a function of type T1 → T2 (e.g., pass it as a parameter,
assign it to a variable etc.). We need to be sure that f can handle any T1

it may be passed as its argument, and that its calling context can handle
any T2 that f may return as its result.
The first constraint requires contra-variance in the argument type. This
guarantees that whatever we actually pass into the function (e.g., T1)
will always be acceptable relative to what the function expects (e.g., a
sub-type of S1).
The second constraint requires co-variance in the return type. This guar-
antees that whatever the function returns (e.g., a S2) will be acceptable
to what its calling context expects (e.g., a sub-type of T2).

3. Infer the type of the following ML function (show your work):

fun f (w,x) = case x of

[] => []

| y::z => w(y)::f(w,z)
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First, assign type variables where appropriate:
fun f (w:’a,x:’b):’c = case x of

[] => []
| (y:’d)::(z:’e) => w(y)::f(w,z)

Then start unifying:
Must Match So unify Resulting in

x [] ’b ’f list ’b 7→ ’f list

(y,z) cons’s arg (’d * ’e) (’h * ’h list)
’d 7→ ’h
’e 7→ ’h list

x cons’s rslt ’f list ’h list ’f 7→ ’h
w fn taking y ’a ’h → ’i ’a 7→ ’h → ’i

(w,z) f’s arg (’h → ’i) * ’h list (’h → ’i) * ’h list

(w(x),f(w,z)) cons’s arg ’i * ’c ’j * ’j list
’i 7→ ’j
’c 7→ ’j list

1st case rslt 2nd case rslt ’k list ’j list ’k 7→ ’j
fn body fn rslt ty ’j list ’j list

Replace types:
fun f (w:’h → ’j ,x:’h list):’j list = case x of

[] => []
| (y:’h)::(z:’h list) => w(y)::f(w,z)

4. What goes wrong if you attempt type inference on fun f(x)= f?

When you attempt to run type-inference on fun f(x)= f, you try to unify
’a with (’a → ’b), which fails the occurs check.
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Question 2: Frame Layout [10 pts]

• Explain the concept of a static link. Why is it needed?

The static link is the frame pointer of the statically enclosing function’s
stack frame. This frame may dynamically be one or many frames out.
The static link is required to allow access to variables declared in outer-
functions, which reside in that function’s frame.

• Explain the difference between the stack pointer and the frame pointer.
One of them can be omitted in certain circumstances. Identify which
one, and explain when it is not needed, and what benefits are obtained
from omitting it.

The FP points at the “start” of the current functions stack frame. Vari-
ables are always a fixed offset from the FP. The SP, on the other hand
points at the end of the stack. In the prescense of dynamic stack allocation
(alloca, variable sized arrays, etc), the offset of a variable from the SP may
change depending on the size of the dynamically allocated structures. The
FP could be omitted when no dynamic allocation is performed. Omitting
the FP saves a few instructions at function entry and exit, improving the
speed of the program.
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Question 3: Translation to IR [10 pts]
Translate the following bits of Tiger into IR (you can either draw the IR
tree or write it out as SML constructors). For each case you should assume
the following variable locations (all InFrame variables are in your own frame.
You can refer to the frame pointer as simply FP). Note: you do not need to
include bounds checks for array accesses:
Variable Location
x InReg t1
y InReg t2
z InFrame -4
a InReg t3

• y := 1 + x

MOVE(TEMP t2 , BINOP(PLUS,CONST 1 ,TEMP t1))

• a[y] := f(z)

MOVE(MEM(BINOP(PLUS,
TEMP t3,
BINOP(TIMES, TEMP t2, CONST 4))),

CALL(LABEL(”f”),[MEM(BINOP(PLUS,FP,CONST -4))]))
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Question 4: Register Allocation [15 pts]
Perform register allocation for a 3 register machine on the following inter-
ference graph (dashed lines indicate move relationships, solid lines indicate
interference). You should coallesce moves whenever it is safe to do so ac-
cording to either heuristic we learned. Show your work (you do not need to
redraw the graph for each step, but you should list the order in which you
simplify/coallesce/freeze nodes)

x

y

z

cb

a

q

p

Simplify b
Coallesce p and q
Simplify pq
Freeze x and c
Simplify x, y, a, z, c
Registers: c: r1, z: r2, a: r3, y: r1, x: r2, pq: r2, b r3
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Question 5: Dataflow Analysis/Optimization
[15 pts]

1: a <-3
2: b <- x+y
3: c <- 5

4: z <- a + b
5: q <- z -4
6: m <- b * 47
7: bgt m > q

8: a <- a + 1
9: c <- m-1
10: blt c < a

15: return

11: b <- b + 1
12: c <- arr[b]
13: a <- a + 1
14: blt c < 100

1. Using the above program fragment, which definitions reach the follow-
ing uses (you can identify them by their instruction number):

• The use of a in instruction 4.

• The use of a in instruction 8.
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• The use of b in instruction 6.

2. For the same program fragment, indicate whether each of the following
expressions is “very busy” (write Y or N) after each block (after the
last instruction in that block, numbered down the left side of the table):

a + 1 m - 1 a + b b * 47 x + y b+1 arr[b]
3
7
10
14
15

3. For each of the following, indicate the appropriate data flow analysis
(you can just write one of RD, LV, VBE, or AE on each line):

• Common sub-expression elimination

• Forward flow/union

• Def/Use Web Formation

• Backwards flow/intersection
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Question 6: Domination [10 pts]
Consider the following control flow graph:

0

1 2

3

4

5

6 7

8
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• Label each node in the graph with its dominator set.

• Identify the loops in the graph by their backedges.
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3 → 3 is one loop. The other is 8 → 4. Note that 4 → 1 is NOT a loop
(see next question).

• This control flow graph has a part that looks like a loop to a naive
definition, but is not a loop for the definition required for many opti-
mizations. Identify this false loop and briefly explain why it is not a
loop.

4 makes a backwards edge to 1, which meets a naive definition of a loop
(e.g., a cycle). However, 1 does not dominate 4 (0→2→3→ 4 is a possible
path), so this is not a true loop.

• Draw the immediate dominator tree for this graph.
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Question 7: Garbage Collection [15 pts]

• List three advantages of garbage collection. You may list advantages
particular to one specific GC algorithm, but please specify which algo-
rithm if you do so.

Any 3 of these (plus possibly others): fast allocation (S&C), improved lo-
cality (S&C), avoid double frees, avoid free-then-use errors, avoid memory
leaks, reduce development/debugging time/cost, ...

• Briefly describe the performance/space tradeoffs between the three al-
gorithms we discussed: reference counting, mark and sweep, and stop
and copy.

Reference counting has very high performance overhead: it requires stores
every time pointers are manipulted, typically resulting in 20–30word per
object to hold the count. Mark and sweep requires a DFS (time propor-
tional to the live objects) and examination of all objects (time proportional
to the total heap size). When the heap size is large relative to the number
of live objects, this amortized cost is acceptable. The direct space over-
head is one word per object (to hold the marking state). Stop and copy
requires time proportional to the number of live objects. It has large space
overhead—half the heap must be unused to copy into. There may be an
additional overhead of one word per object to hold forwarding pointers,
depending on the object layout.
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• The garbage collector needs to know which fields in an object are point-
ers, and which are not. Briefly describe two ways it might do this.

Any two of these three: The compiler could pass down type information to
tell it. It could be conservative: anything that looks like a pointer might
be (but then no moving objects). It could use tagging: steal one bit from
each word to indicate “pointer or not”.
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