
Compiler Fall 2011
PRACTICE Midterm Exam

This is a full length practice midterm exam. If you want to take it at
exam pace, give yourself 75 minutes to take the entire test. Just like the real
exam, each question has a point value. There are 75 points in the exam, so
that you can pace yourself to average 1 point per minute (some parts will be
faster, some slower).

Questions:

1. SML [5 points]

2. Regular Languages [10 points]

3. NFA to regular expressions [10 points]

4. NFA to DFA [10 points]

5. Regular expression to NFA [10 points]

6. Context Free Langauges [10 points]

7. LL Parsing [10 points]

8. LR Parsing [10 points]

This is the solution set to the practice exam. The solutions appear in blue
boxes.

1

Question 1: SML [5 pts]
Part A: Evaluate the following SML expressions (1 point each):

1. let val a = 4

val b = 5

in

if (a > b) then 1 else 2

end

Answer:
2

2. let val a = 2

val b = let val a = 4

val q = 5

in

a + q

end

in

a + b

end

Answer:
11

3. let fun f (0, b) = b

| f (a, b) = f (a-1, a+b)

in

f (3, 5)

end

Answer:
11

2

Part B: Write down the type for each of these SML functions (1 point
each):

1. fun f (x) = x ^ " " ^ x

Answer:
string → string

2. fun f (x) = let fun g ([], ans) = ans

| g (a::l,ans) = g(l, a::a::ans)

in

g(x,[])

end

Answer:
’a list → ’a list

3

Question 2: Regular Languages [10 pts]

1. Write a regular expression for all strings of as and bs which contains
the substring abba (2 point).

Answer:
(a | b)∗ abba (a | b)∗

2. Write a regular expression for all strings of xs and ys where every y is
immediately followed by at least 3 xs (2 points).

Answer:
(x | (yxxx)) ∗

3. Write a regular expression for all strings of ps and qs which contains
an odd number of qs (3 points).

Answer:
p∗ q ((q p∗ q) | p)∗

4. A finite langauge is a language with a finite number of strings. For
example, the language with only the string a, ba, and bba is finite,
while the langauges in parts 1,2, and 3 above are not finite. Are all
finite languages regular? If so, explain why. If not, give an example of
a finite langauge which is not regular (3 points).

Answer:
Yes, all finite langauges are regular. Imagine a finite langauge com-
prised of strings s1, s2, ... sn. I can simply write a regular expression
to describe it by ORing together all possible cases (s1) | (s2) | ... | (sn).
Note that this only works for finite langauges, because I have a finite
number of cases to OR together.

4

Question 3: NFA to Regexp [10 pts]

Convert the following NFA to a regular expression :

2

3
1

a

b

c

d

4e
f

g

55

Answer:
The regular expression is (ab∗d)∗ ((ab∗cg) — (e f)). We derive it in 4 steps
shown below (note you can remove states in different orders and come up
with different, equivalent answers which are still correct).
Step 0: Put in a new start state with an ε transition to the old start. Step
1: Remove states 3 and 4. Step 2: Remove state 2. This results in a loop
on 1 and a new edge from 1 to 5. Step 3: Collapse the parallel 1 → 5 edges
into an OR. Step 4: Remove state 1. The answer is written on the remaining
edge

5

2

3
1

a

b

c

d

4e
f

g

55

0
ε

2

1

a

b

d

ef

cg

55

0
ε

b

Step 1

Step 0

Workspace for question 3

6

1

ab*d

ef

ab*cg

550
ε

1

ab*d

(ab*cg) | (ef)

550
ε

(ab*d)* ((ab*cg) | (ef))
550

Step 2

Step 3

Step 4

Workspace for question 3

7

Question 4: NFA to DFA [10 pts]
Convert the following NFA to a DFA:

1

2

b

b ε

b
aa

54

53

a

Answer:

{1}

{2,4}
{1,3}

a b

{2,3,4}

a

{3}

a

a

b

a

8

Question 5: Regexp to NFA [10 pts]
Draw an NFA for the following regular expressions:

1. a (b |c) d (2 points)

Answer:

1 2
a

3

b

c

d
54

2. (abc)∗ (2 points)

Answer:

1 2
a

3
b c

55

ε

ε

9

3. ((a b) ∗ c (d | e) (f | g))∗ h (6 points)

Answer:

1 2
a

3
b

57

ε
ε

c

4 5
d

e
6

f

g

h

0
ε

10

Question 6: Context Free Languages
[10 pts]
Write context free grammars for the following languages (your grammar does not have to
be LR(1), LL(1) etc):

1. All strings open and close parentheses, where the parentheses are balanced (2
points).

Answer:
S → (S)
| S S
|ε

2. The language described by the regular expression ((ab)∗(c|d))∗ (3 points).

Answer:
S → E S
|ε

E → A c
| A d

A → a b A
|ε

Note that this was derived by making A which is (ab)∗. Then making E
which is the contents of the outer star. Then making S be zero or more repetitions
of E.

3. Expressions consisting of num, +, and *. You should write your grammar so that *

has higher precedence than + (5 points):

Answer:
E → E + T
| T

T → T * num
| num

11

Question 7: LL Parsing [10 pts]
Consider the following grammar:

S -> S a S b

| c

| Q q

Q -> Q m

|

• Which non-terminals (if any) can derive empty? (1 point)

Answer:
Q can derive empty.

• What are the FIRST sets of Q and S? (1 point)

Answer:
The FIRST set of Q is {m}. The FIRST set of S is {m,q,c}

.

• What are the FOLLOW sets of Q and S? (1 point)

Answer:
The FOLLOW set of Q is {q,m}. The FOLLOW set of S is {a,b}.

• This grammar can not be parsed by an LL(0) or LL(1) parser. Explain why not (2
points).

Answer:
The grammar is left recursive (in both the rules S→S a S b and Q→ Q m). LL
parsers cannot handle left recursion.

• Rewrite the grammar so that it accepts the same langauge, but can be parsed by
an LL(1) parser (5 points).

Answer:
S → c Stail
| Q q Stail

Stail → a S b Stail
|

Q → m Q
|

12

Question 8: LR Parsing [10 pts]
Consider the following grammar :

0: S -> X

1: X -> a X c

2: X -> X X

3: X -> b

1. What is Closure({X → X . X)? (2 points)

Answer:
X → X . X
X → . a X c
X → . X X
X → . b

2. What is Goto({X → a . X c}, X)? (2 points)

Answer:
Closure{X → a X . c} which is just
X → a X . c

3. Show the execution of the parser on the string a b b c. The state machine for the
parser is provided along with a table for you to fill in on the next page (6 points).

13

Using the grammar from the previous page:

0: S -> X

1: X -> a X c

2: X -> X X

3: X -> b

And the state machine for that grammar:
State a b c $ S X

1 s2 s3 g5 g4
2 s2 s3 g6
3 r3 r3 r3 r3
4 s2 s3 r0 g7
5 Acpt
6 s3 s8 g7
7 r2 r2 r2 r2
8 r1 r1 r1 r1

Fill in the table to the right. In one line, show
the current status of the parser—the position
in the input, the state the parser is in, and the
contents of the stack. In the next line, show
the action that the parser takes. Then show
the new status in the following line. Repeat
this process until the parser accepts the input.
The first two are done for you.

Input State Stack

.a b b c 1

Shift to state 2

a. b b c 2 a1

Shift to state 3

a b . b c 3 a1 b2

Reduce by rule 3

a b . b c 2 a1 X2

Goto 6

a b . b c 6 a1 X2

Shift to state 3

a b b . c 3 a1 X2 b6

Reduce by rule 3

a b b . c 6 a1 X2 X6

Goto 7

a b b . c 7 a1 X2 X6

Reduce by rule 2

a b b . c 2 a1 X2

Goto 6

a b b . c 6 a1 X2

Shift to state 8

a b b c . 8 a1 X2 c6

Reduce by rule 1

a b b c . 1 X1

Goto 4

a b b c . 4 X1

Reduce by rule 0

a b b c . 1 S1

Goto 5

a b b c . 5 S1

Accept14

