Multiplicative Weights Algorithms

CompSci 590.03
Instructor: Ashwin Machanavajjhala
This Class

• A Simple Multiplicative Weights Algorithm

• Multiplicative Weights for privately publishing synthetic data
Multiple Experts Problem

Will it rain today?

Yes Yes Yes No

What is the best prediction based on these experts?
Multiple Experts Problem

• Suppose we know the best expert (who makes the least error), then we can just return that expert says.
 – This is the best we can hope for.

• We don’t know who the best expert is.
 – But we can learn ... we know whether it rained or not at the end of the day.

Qn: Is there an algorithm that learns over time who the best expert is, and has an accuracy that close to the best expert?
Weighted Majority Algorithm

[Littlestone&Warmuth ‘94]

Algorithm:

\[Is \frac{\sum_i w_i y_i}{\sum_i w_i} > \frac{1}{2} ? \]
Weighted Majority Algorithm

1-\(\epsilon\) 1-\(\epsilon\) 1-\(\epsilon\)
\(\times\) \(\times\) \(\times\)

“Experts”

Yes Yes Yes No

Algorithm

\[
\text{Is } \frac{\sum_i w_i y_i}{\sum_i w_i} > \frac{1}{2} ?
\]

Yes!

Truth

No
Multiplicative Weights Algorithm

- Maintain weights (or probability distribution) over experts.

Answering/Prediction:
- Answer using weighted majority, OR
- Randomly pick an expert based on current probability distribution. Use random experts answer.

Update:
- Observe truth.
- Decrease weight (or probability) assigned to the experts who are wrong.
Error Analysis

Theorem:

After t steps,

- let $m(t,j)$ be the number of errors made by expert j
- let $m(t)$ be the number of errors made by algorithm
- let n be the number of experts,

$$\forall j, \quad m(t) \leq \frac{2 \ln n}{\varepsilon} + 2(1 + \varepsilon)m(t,j)$$
Error Analysis: Proof

• Let $\varphi(t) = \Sigma w_i$. Then, $\varphi(1) = n$.

• When the algorithm makes a mistake,
 $\varphi(t+1) \leq \varphi(t) \left(\frac{1}{2} + \frac{1}{2}(1-\varepsilon)\right) = \varphi(t)(1-\varepsilon/2)$

• When the algorithm is correct,
 $\varphi(t+1) \leq \varphi(t)$

• Therefore,
 $\varphi(t) \leq n(1-\varepsilon/2)^{m(t)}$
Error Analysis: Proof

- $\varphi(t) \leq n(1-\varepsilon/2)^{m(t)}$

- Also, $W_j(t) = (1-\varepsilon)^{m(t,j)}$

- $\varphi(t) \geq W_j(t) \Rightarrow n(1-\varepsilon/2)^{m(t)} \geq (1-\varepsilon)^{m(t,j)}$

- Hence, $m(t) \geq 2/\varepsilon \ln n + 2(1+\varepsilon)m(t,j)$
Multiplicative Weights

This algorithm technique has been used to solve a number of problems:

- Packing and covering Linear programs (Plotkin-Shmoys-Tardos)
- Log n approximation for many NP-hard problems (set cover ...)
- Boosting
- Zero sum games
- Network congestion
- Semidefinite programs

[Arora, Hazan, Kale ‘05]
This Class

• A Simple Multiplicative Weights Algorithm

• Multiplicative Weights for privately publishing synthetic data
Workload-aware Synthetic Data Generation

Input:

Q, a workload of (expected/typical) linear queries of the form $\Sigma_{x} q(x)$, and each $q(x)$ is in the range $[-1,1]$

D, a database instance

T, number of iterations

ε, differential privacy parameter

Output:

A, a synthetically generated dataset such that for all q in Q, $q(A)$ is close to $q(D)$
Multiplicative Weights Algorithm

- Let n be the number of records in D, and N be the number of values in the domain.

Initialization

- Let A_0 be a weight function that assigns n/N weight to each value in the domain.
Multiplicative Weights

• Let n be the number of records in D, and N be the number of values in the domain.
• Let A_0 be a weight function that assigns n/N weight to each value in the domain.

In iteration j in $\{1,2,...,T\}$,

• Pick query q from Q with maximum error
 – $\text{Error} = q(D) - q(A_{i-1})$
Multiplicative Weights

- Let \(n \) be the number of records in \(D \), and \(N \) be the number of values in the domain.
- Let \(A_0 \) be a weight function that assigns \(n/N \) weight to each value in the domain.

In iteration \(j \) in \(\{1, 2, \ldots, T\} \),
- Pick query \(q \) from \(Q \) with maximum error
- Compute \(m = q(D) \)
Multiplicative Weights

- Let n be the number of records in D, and N be the number of values in the domain.
- Let A_0 be a weight function that assigns n/N weight to each value in the domain.

In iteration j in $\{1, 2, \ldots, T\}$,

- Pick query q from Q with maximum error
- Compute $m = q(D)$
- Update Weights
 - $A_i(x) \propto A_{i-1}(x) \cdot \exp(q(x) \cdot (m - q(A_{i-1}))/2n)$

Output: $\text{average}_i(A_i)$
Update rule

$$A_i(x) \propto A_{i-1}(x) \cdot \exp\left(q(x) \cdot \frac{m - q(A_{i-1})}{2n} \right)$$

If $q(D) - q(A) > 0$,
then increase the weight of records with $q(x) > 0$, and
decrease the weight of records with $q(x) < 0$

If $q(D) - q(A) < 0$,
then decrease the weight of records with $q(x) > 0$, and
increase the weight of records with $q(x) < 0$
Error Analysis

Theorem:
For any database D, and any set of linear queries Q, MWEM outputs an A such that:

$$\max_{q \in Q} |q(A) - q(D)| \leq 2n \sqrt{\frac{\log |\text{dom}|}{T}}$$
Error Analysis: Proof

\[\max_{q \in Q} |q(A) - q(D)| = \max_{q \in Q} \left| q \left(\text{avg} A_i \right) - q(D) \right| \]
\[\leq \text{avg} \max_{i \in Q} |q(A_i) - q(D)| \leq \text{avg} \max_{i \in Q} \text{maxerr}_i \]

Consider the potential function: \(\varphi(i) = \sum_{x \in \text{dom}} \frac{D(x)}{n} \log \left(\frac{D(x)}{A_i(x)} \right) \)

\[\varphi(i) \geq 0, \text{ and } \varphi(i) \leq \log |\text{dom}| \]
Error Analysis: Proof

Claim: \(\forall i, \varphi(i - 1) - \varphi(i) \geq \left(\frac{q(D) - q(A_i)}{2n} \right)^2 \)

\[
\text{avg maxerr}_i = \frac{1}{T} \sum_{i=1}^{T} |q(D) - q(A_i)|
\]

\[
\leq \frac{1}{T} \sum_{i=1}^{T} \left(2n \sqrt{\varphi(i - 1) - \varphi(i)} \right)
\]

\[
\leq 2n \sqrt{\frac{1}{T} \sum_{i=1}^{T} (\varphi(i - 1) - \varphi(i))}
\]

\[
= 2n \sqrt{\frac{\varphi(0) - \varphi(T)}{T} = 2n \sqrt{\frac{\log|\text{dom}|}{T}}}
\]
Synthetic Data Generation with Privacy

Input:
- Q, a workload of (expected/typical) linear queries of the form $\Sigma_x q(x)$, and each $q(x)$ is in the range $[-1,1]$
- D, a database instance
- T, number of iterations
- ϵ, differential privacy parameter

Output:
- A, a synthetically generated dataset such that for all q in Q, $q(A)$ is close to $q(D)$
MWEM

Let \(n \) be the number of records in \(D \), and \(N \) be the number of values in the domain.

Initialization

- Let \(A_0 \) be a weight function that assigns \(n/N \) weight to each value in the domain.
Let \(n \) be the number of records in \(D \), and \(N \) be the number of values in the domain.

Let \(A_0 \) be a weight function that assigns \(n/N \) weight to each value in the domain.

In iteration \(j \) in \(\{1, 2, \ldots, T\} \),

- Pick query \(q \) from \(Q \) with max error using Exponential Mechanism
 - Parameter: \(\varepsilon/2T \)
 - Score function: \(|q(A_{i-1}) - q(D)| \)

More likely to pick those queries for which the answer on the synthetic data is very different from the answer on the true data.
Let \(n \) be the number of records in \(D \), and \(N \) be the number of values in the domain. Let \(A_0 \) be a weight function that assigns \(n/N \) weight to each value in the domain.

In iteration \(j \) in \(\{1, 2, \ldots, T\} \),

1. Pick query \(q \) from \(Q \) with max error using Exponential Mechanism.
2. Compute \(m = q(D) \) using Laplace Mechanism
 - Parameter: \(\varepsilon/2T \)
 - \(m = q(D) + \text{Lap}(2T/\varepsilon) \)
Let n be the number of records in D, and N be the number of values in the domain.

Let A_0 be a weight function that assigns n/N weight to each value in the domain.

In iteration j in $\{1, 2, \ldots, T\}$,

- Pick query q from Q with max error using Exponential Mechanism
- Compute $m = q(D)$ using Laplace Mechanism
- Update Weights
 \[A_i(x) \propto A_{i-1}(x) \cdot \exp\left(q(x) \cdot \frac{(m - q(A_{i-1}))}{2n} \right) \]

Output: $\text{average}_i(A_i)$
Update rule

\[A_i(x) \propto A_{i-1}(x) \cdot \exp(q(x) \cdot (m - q(A_{i-1}))/2n) \]

If noisy \(q(D) - q(A) > 0 \),
then increase the weight of records with \(q(x) > 0 \), and
decrease the weight of records with \(q(x) < 0 \)

If noisy \(q(D) - q(A) < 0 \),
then decrease the weight of records with \(q(x) > 0 \), and
increase the weight of records with \(q(x) < 0 \)
Error Analysis

Theorem:
For any database D, and any set of linear queries Q, with probability at least $1 - 2T/|Q|$, MWEM outputs an A such that:

$$\max_{q \in Q} |q(A) - q(D)| \leq 2n \sqrt{\frac{\log |\text{dom}|}{T}} + \frac{10T \log |Q|}{\epsilon}$$
Error Analysis: Proof

$$\max_{q \in Q} |q(A) - q(D)| = \max_{q \in Q} \left| q \left(\frac{1}{i} \sum_{i} A_i \right) - q(D) \right| \leq \max_{i} \max_{q \in Q} |q(A_i) - q(D)| \leq \max_{i} \text{maxerr}_i$$

1. But exponential mechanism picks q_i, which might not have the maximum error!

$$P(|q_i(A_i) - q_i(D)| < \text{maxerr}_i - r) < |Q| \cdot e^{-\frac{\varepsilon r}{4T}}$$

When $r = \frac{8T \log |Q|}{\varepsilon}$, we get w.p. $1 - \frac{1}{|Q|}$

$$\text{maxerr}_i \leq |q_i(A_i) - q_i(D)| + \frac{8T \log |Q|}{\varepsilon}$$
Error Analysis: Proof

\[
\max_{q \in Q} |q(A) - q(D)| = \max_{q \in Q} \left| q\left(\text{avg}A_i \right) - q(D) \right|
\leq \text{avg} \max_{i, q \in Q} |q(A_i) - q(D)| \leq \text{avg maxerr}_i
\]

1. In each iteration with probability at least \(1 - 1/|Q|\), error in the query picked by exponential mechanism is smaller than max error by at most

\[
8T \frac{\log |Q|}{\varepsilon}
\]

2. **We add noise to \(m = q(D)\).** But with probability at least \(1 - 1/|Q|\) in each iteration, the noise added by Laplace is at most

\[
2T \frac{\log |Q|}{\varepsilon}
\]
Error Analysis

Theorem:
For any database D, and any set of linear queries Q, with probability at least $1 - \frac{2T}{|Q|}$, MWEM outputs an A such that:

\[
\max_{q \in Q} |q(A) - q(D)| \leq 2n \sqrt{\frac{\log|\text{dom}|}{T}} + \frac{10T \log |Q|}{\varepsilon}
\]
Optimizations

• Output A_T rather than the average
• In update step, use queries picked in all previous rounds for which $(m-q(A))$ is large.
• Can improve the solution by initializing A_0 with noisy counts.
Next Class

• Implementations of Differential Privacy
 – How to write programs with differential privacy
 – Security issues due to incorrect implementation
 – How to convert any program to satisfy differential privacy
References

Hardt & Rothblum, “A multiplicative weights mechanism for privacy-preserving data analysis”, FOCS ’10