Implementing Differential Privacy & Side-channel attacks

CompSci 590.03
Instructor: Ashwin Machanavajjhala
Outline

• Differential Privacy Implementations
 – PINQ: Privacy Integrated Queries [McSherry SIGMOD ‘09]
 – Airavat: Privacy for MapReduce [Roy et al NDSS ‘10]

• Attacks on Differential Privacy Implementations
 – Privacy budget, state and timing attacks [Haeberlin et al SEC ‘11]

• Protecting against attacks
 – Fuzz [Haeberlin et al SEC ‘11]
 – Gupt [Mohan et al SIGMOD ‘12]
Differential Privacy

• Let A and B be two databases such that $B = A - \{t\}$.

• A mechanism M satisfies ϵ-differential privacy, if for all outputs O, and all such A, B

$$P(M(A) = O) \leq e^{\epsilon} P(M(B) = O)$$
Differential Privacy

• Equivalently, let A and B be any two databases
• Let $A \Delta B = (A - B) \cup (B - A)$... or the symmetric difference

• A mechanism M satisfies ε-differential privacy, if for all outputs O,

$$P(M(A) = O) \leq e^{\varepsilon \times |A \Delta B|} P(M(B) = O)$$
PINQ: Privacy Integrated Queries

• Implementation is based on C#’s LINQ language

Example 1 Counting searches from distinct users in PINQ.

```csharp
var data = new PINQueryable<SearchRecord>( ... ... );

var users = from record in data
             where record.Query == argv[0]
             groupby record.IPAddress

Console.WriteLine(argv[0] + ": " + users.NoisyCount(0.1));
```
PINQ

- An analyst initiates a PINQueryable object, which in turn recursively calls other objects (either sequentially or in parallel).

- A PINQAgent ensures that the privacy budget is not exceeded.
PINQAgent: Keeps track of privacy budget

Example 2: Implementing a fixed budget in a PINQAgent.

```java
public class PINQAgentBudget : PINQAgent
{
    private double budget;

    public override bool Alert(double epsilon)
    {
        if (budget < epsilon)
            return false;

        budget = budget - epsilon;
        return true;
    }

    public PINQAgentBudget(double b) { budget = b; }
}
```
PINQ: Composition

- When a set of operations O1, O2, ... are performed sequentially, then the budget of the entire sequence is the sum of the ϵ for each operation.

- When the operations are run in parallel on disjoint subsets of the data, the privacy budget for all the operations is the max ϵ.
Example 3 [Abbreviated] Implementation of NoisyCount.

double NoisyCount(double epsilon)
{
 if (myagent.Alert(epsilon))
 return mysource.Count() + Laplace(1.0/epsilon);
 else
 throw new Exception("Access is denied");
}

Aggregation operators

Laplace Mechanism
• NoisyCount
• NoisySum

Exponential Mechanism
• NoisyMedian
• NoisyAverage
PINQ: Transformation

Sometimes aggregates are computed on transformations on the data

- **Where**: takes as input a predicate (arbitrary C# function), and outputs a subset of the data satisfying the predicate

- **Select**: Maps each input record into a different record using a C# function

- **GroupBy**: Groups records by key values

- **Join**: Takes two datasets, and key values for each and returns groups of pairs of records for each key.
PINQ: Transformations

Sensitivity can change once transformations have been applied.

- **GroupBy**: Removing a record from an input dataset A, can change one group in the output T(A). Hence, \(|T(A) \Delta T(B)| = 2 \ |A \Delta B|\)

- Hence, the implementation of GroupBy multiplies \(\varepsilon\) by 2 before recursively invoking the aggregation operation on each group.

- **Join** can have a much larger (unbounded) sensitivity.
Example 5 Measuring query frequencies in PINQ.

```csharp
// prepare data with privacy budget
var agent = new PINQAgentBudget(1.0);
var data = new PINQueryable<string>(rawdata, agent);

// break out fields, filter by query, group by IP
var users = data.Select(line => line.Split(',,')).
  .Where(fields => fields[20] == args[0])
  .GroupBy(fields => fields[0]);

// output the count to the screen, or anywhere else
Console.WriteLine(args[0] + ": " + users.NoisyCount(0.1));
```
Outline

• Differential Privacy Implementations
 – PINQ: Privacy Integrated Queries [McSherry SIGMOD ‘09]
 – Airavat: Privacy for MapReduce [Roy et al NDSS ‘10]

• Attacks on Differential Privacy Implementations
 – Privacy budget, state and timing attacks [Haeberlin et al SEC ‘11]

• Protecting against attacks
 – Fuzz [Haeberlin et al SEC ‘11]
 – Gupt [Mohan et al SIGMOD ‘12]
Covert Channel

• Key assumption in differential privacy implementations: The querier can only observe the result of the query, and nothing else.
 – This answer is guaranteed to be differentially private.

• In practice: The querier can observe other effects.
 – E.g, Time taken by the query to complete, power consumption, etc.
 – Suppose a system takes 1 minute to answer a query if Bob has cancer and 1 micro second otherwise, then based on query time the adversary may know that Bob has cancer.
Threat Model

• Assume the adversary (querier) does not have physical access to the machine.
 – Poses queries over a network connection.

• Given a query, the adversary can observe:
 – Answer to their question
 – Time that the response arrives at their end of the connection
 – The system’s decision to execute the query or deny (since the new query would exceed the privacy budget)
Timing Attack

Function is_f(Record r){
 if(r.name = Bob && r. disease = Cancer)
 sleep(10 sec); // or go into infinite loop, or throw exception
 return f(r);
}

Function countf(){
 var fs = from record in data
 where (is_f(record))
 print fs.NoisyCount(0.1);
}

Lecture 14 : 590.03 Fall 12
Timing Attack

Function is_f(Record r) {
 if (r.name == Bob && r.disease == Cancer)
 sleep(10 sec); // or go into infinite loop, or throw exception
 return f(r);
}

If Bob has Cancer, then the query takes > 10 seconds
If Bob does not have Cancer, then query takes less than a second.
Global Variable Attack

Boolean found = false;

Function f(Record r){
 if(found) return 1;
 if(r.name = Bob && r.disease = Cancer){
 found = true; return 1;
 } else return 0;
}

Function countf(){
 var fs = from record in data
 where (f(record))
 print fs.NoisyCount(0.1);
}

Lecture 14 : 590.03 Fall 12
Global Variable Attack

Boolean found = false;
Function f(Record r){
 if(found) return 1;
 if(r.name = Bob && r.disease = Cancer){
 found = true; return 1;
 } else return 0;
}

Function numHealthy(){
 var health = from record in data
 where (f(record))
 print health.NoisyCount(0.1);
}

Typically, the Where transformation does not change the sensitivity of the aggregate (each record transformed into another value).
But, this transformation changes the sensitivity – if Bob has Cancer, then all subsequent records return 1.
Privacy Budget Attack

Function is_f(Record r)
{
 if(r.name = Bob && r.disease = Cancer)
 {
 run a sub-query that uses a lot of the privacy budget;
 }
 return f(r);
}

Function countf()
{
 var fs = from record in data
 where (f(record))
 print fs.NoisyCount(0.1);
}
Privacy Budget Attack

Function is_f(Record r){
 if(r.name = Bob && r.disease = Cancer){
 run a sub-query that uses a lot of the privacy budget;
 }
 return f(r);
}

If Bob does not has Cancer, then privacy budget decreases by 0.1.
If Bob has Cancer, then privacy budget decreases by 0.1 + \Delta.

Even if adversary can’t query for the budget, he can detect the change in budget by counting how many more queries are allowed.
Outline

• Differential Privacy Implementations
 – PINQ: Privacy Integrated Queries [McSherry SIGMOD ‘09]
 – Airavat: Privacy for MapReduce [Roy et al NDSS ‘10]

• Attacks on Differential Privacy Implementations
 – Privacy budget, state and timing attacks [Haeberlin et al SEC ‘11]

• Protecting against attacks
 – Fuzz [Haeberlin et al SEC ‘11]
 – Gupt [Mohan et al SIGMOD ‘12]
Fuzz: System for avoiding covert-channel attacks

- Global variables are not supported in this language, thus ruling out our state attacks.
- **Type checker** rules out *budget-based channels* by statically checking the sensitivity of a query before they are executed.
- **Predictable query processor** ensures that each microquery takes the same amount of time, ruling out *timing attacks*.
Fuzz Type Checker

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Arguments</th>
<th>Return value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map db f T d</code></td>
<td>Database db, function f, timeout T, default value d</td>
<td>Database</td>
</tr>
<tr>
<td><code>split db p T</code></td>
<td>Database db, boolean predicate p, timeout T</td>
<td>Two databases</td>
</tr>
<tr>
<td><code>count db</code></td>
<td>Database db</td>
<td>Noised</td>
</tr>
<tr>
<td><code>sum db</code></td>
<td>Database db</td>
<td>Noised $\sum db_i$</td>
</tr>
</tbody>
</table>

• A primitive is critical if it takes db as an input.

• Only four critical primitives are allowed in the language
 – No other code is allowed.

• A type system that can infer an upper bound on the sensitivity of any program (written using the above critical primitives).
 [Reed et al ICFP ‘10]
Handling timing attacks

• Each microquery takes exactly the same time T

• If it takes less time – delay the query

• If it takes more time – abort the query
 – But this can leak information!
 – Wrong Solution
Handling timing attacks

- Each microquery takes exactly the same time T
- If it takes less time – delay the query
- If it takes more time – return a default value
Fuzz Predictable Transaction

• P-TRANS (λ, a, T, d)
 - λ : function
 - a : set of arguments
 - T : Timeout
 - d : default value

• Implementing P-TRANS (λ, a, T, d) requires:
 - Isolation: Function $\lambda(a)$ can be aborted without waiting for any other function
 - Preemptability: $\lambda(a)$ can be aborted in bounded time
 - Bounded Deallocation: There is a bounded time needed to deallocate resources associated with $\lambda(a)$
Outline

• Differential Privacy Implementations
 – PINQ: Privacy Integrated Queries [McSherry SIGMOD ‘09]
 – Airavat: Privacy for MapReduce [Roy et al NDSS ‘10]

• Attacks on Differential Privacy Implementations
 – Privacy budget, state and timing attacks [Haeberlin et al SEC ‘11]

• Protecting against attacks
 – Fuzz [Haeberlin et al SEC ‘11]
 – Gupt [Mohan et al SIGMOD ‘12]
Algorithm 1 Sample and Aggregate Algorithm [24]

Input: Dataset $T \in \mathbb{R}^n$, length of the dataset n, privacy parameters ϵ, output range (min, max).

1: Let $\ell = n^{0.4}$
2: Randomly partition T into ℓ disjoint blocks T_1, \ldots, T_ℓ.
3: for $i \in \{1, \ldots, \ell\}$ do
4: $O_i \leftarrow$ Output of user application on dataset T_i.
5: If $O_i > \text{max}$, then $O_i \leftarrow \text{max}$.
6: If $O_i < \text{min}$, then $O_i \leftarrow \text{min}$.
7: end for
8: $A \leftarrow \frac{1}{\ell} \sum_{i=1}^\ell O_i + \text{Lap}(\frac{|\text{max} - \text{min}|}{\ell \cdot \epsilon})$
Sample and Aggregate Framework

- $S =$ range of the output
- $L =$ number of blocks

Recall from previous lecture:

Theorem [Smith STOC ‘09]: Suppose database records are drawn i.i.d. from some probability distribution P, and the estimator (function f) is asymptotically normal at P. Then if $L = o(\sqrt{n})$, then the average output by the Sample Aggregate framework converges to the true answer to f.
Estimating the noise

- Sensitivity of the aggregation function $= S/L$
 - $S =$ range of the output
 - $L =$ number of blocks

- Sensitivity is independent of the actual program f

- Therefore, **GUPT avoids attacks using privacy budget as the covert channel.**
Estimating the noise

- Sensitivity of the aggregation function = S/L
 - $S =$ range of the output
 - $L =$ number of blocks

- Output range can be:
 - Specified by analyst, or
 - α^{th} and $(100 - \alpha)^{th}$ percentiles can be estimated using Exponential Mechanism, and a Windsorized mean can be used as the aggregation function.
Handling Global State attacks

• The function is computed on each block in an isolated execution environment.

 – Analyst sees only the final output, and cannot see any intermediate output or static variables.

 – Global variables can’t inflate the sensitivity of the computation (like in the example we saw) ... because the sensitivity only depends on S and L and not on the function itself.
Handling Timing Attacks

Same is in Fuzz ...

• Fix some estimate T on the maximum time allowed for any computation (on a block)
• If computation finishes earlier, then wait till time T elapses
• If computation takes more time, stop and return a default value.
Comparing the two systems

<table>
<thead>
<tr>
<th>GUPT</th>
<th>FUZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Allows arbitrary computation. But, accuracy is guaranteed for certain estimators.</td>
<td>• Allows only certain critical operations.</td>
</tr>
<tr>
<td>• Privacy-budget attack: Sensitivity is controlled by S (output range) and L (number of blocks) that are statically estimated.</td>
<td>• Privacy-budget attack: Sensitivity is statically computed.</td>
</tr>
<tr>
<td>• State attack: Adversary can’t see any static variables.</td>
<td>• State attack: Global variables are disallowed.</td>
</tr>
<tr>
<td>• Timing attack: Time taken across all blocks is predetermined.</td>
<td>• Timing Attack: Time taken across all records is predetermined.</td>
</tr>
</tbody>
</table>
Summary

• PINQ (and Airavat) are frameworks for differential privacy that allow any programmer to incorporate privacy without needing to know how to do Laplace or Exponential mechanism.

• Implementation can disclose information through side-channels
 – Timings, Privacy-budget and State attacks

• Fuzz and GUPT are frameworks that disallow these attacks by
 – Ensuring each query takes a bounded time on all records or blocks
 – Sensitivity is statically estimated (rather than dynamically)
 – Global static variables are either inaccessible to adversary or disallowed
Open Questions

• Are these the only attacks that can be launched against a differential privacy implementation?

• Current implementations only simple algorithms for introducing privacy – Laplace and Exponential mechanisms. Optimizing error for batches of queries and advanced techniques (e.g., sparse vector) are not implemented. Can these lead to other attacks?

• Does differential privacy always protect against disclosure of sensitive information in all situations?
 – NO ... not when individuals in the data are correlated.
 More in the next class.
References

F. McSherry, “PINQ: Privacy Integrated Queries”, SIGMOD 2009

J. Reed, B. Pierce, M. Gaboardi, “Distance makes types grow stronger: A calculus for differential privacy”, ICFP 2010

A. Smith, "Privacy-preserving statistical estimation with optimal convergence rates", STOC 2011