Problem 1
Recall that in Fibonacci heaps, $\text{DECREASE-KEY}(x, k)$, where x is a node and k is the new key of x, is implemented as follows:

1. decrease the key of x to k
2. if x is a root, stop; else, $\text{CUT}(x)$: remove x from the child list of its parent y and add x to the root list; if x is marked, unmark x
3. $\text{CASCADE-CUT}(y)$: if y is a root, stop; else, if y is unmarked, mark y and stop; otherwise, $\text{CUT}(y)$ and $\text{CASCADE-CUT}(z)$, where z is the parent of y.

Consider a new implementation of $\text{CASCADE-CUT}(y)$ in which we do not mark or unmark nodes. Instead, we flip a fair independent coin (with probability half, the coin shows up heads, and with probability half, it shows up tails; further, the outcome of the coin flip is independent of the outcomes of all other coin flips). If it shows up heads, then we do $\text{CUT}(y)$ and $\text{CASCADE-CUT}(z)$; otherwise, we stop. Show that the amortized expected running time of each operation (DECREASE-KEY, DELETE-MIN, and ENQUEUE) for this new data structure is asymptotically identical to the amortized running time in the original implementation taught in class.

Problem 2
(a) Recall that the rank of a splay tree node was defined as the logarithm of its number of descendants, including itself. Instead, suppose we give an arbitrary positive integer weight $w(x)$ to each node x and define a new rank function as the logarithm of the sum of weights of all descendants of a node, including itself. Show that for each of the three types of splay operations (l, ll, and lr), the bounds on the amortized running time derived in class still hold.

(b) Given a sequence Q of FIND queries on a set of distinct integers I, where each integer in I is queried at least once, the optimal static binary search tree (BST) T_Q is defined as a BST on I that minimizes the total running time of the queries in Q. Let C_Q denote this minimum total running time. Now suppose we build a splay tree T_S on I and let C_S denote the total running time of the queries Q on T_S. Use the property you derived in part (a) to show that there exists some constant k such that $C_S \leq k \cdot C_Q$.

Due on September 12, 2013