Accuracy Limits on Private Query Answering

CompSci 590.03
Instructor: Ashwin Machanavajjhala
Outline

• Baseline for Privacy: Blatant Non-Privacy

• Exponential Time Adversaries

• Polynomial Time Adversaries

• Feasibility result
Query Answering

Database

Query

True Answer

Perturbed Answer

Researcher
Model

• Database of bits: $d \in \{0,1\}^n$

• Queries: Subset sums

 – Consider $q \subseteq [n]$

 – $a_q = \sum_{i \in q} d_i$

• Perturbed Answer returned by a private algorithm: $A(q)$

 – Error: $\mathcal{E} = \max_q |A(q) - a_q|$
Blatant Non-Privacy

Definition 3 (Non-Privacy). A database $D = (d, A)$ is $t(n)$-non-private if for every constant $\varepsilon > 0$ there exists a probabilistic Turing Machine M with time complexity $t(n)$ so that

$$\Pr[M^A(1^n) \text{ outputs } c \text{ s.t. } \text{dist}(c, d) < \varepsilon n] \geq 1 - \text{neg}(n).$$

- $\text{dist}(c,d)$ = Hamming distance
 = number of positions where databases c and d differ.

- $\text{neg}(n)$: $\forall c, \exists n_0, \forall n > n_0 \text{ neg}(n) < 1/n^c$

- Meaning of the definition:
 A database d along with a perturbed access mechanism A is $t(n)$-non-private if an attacker can “decode” the database with high probability using query-(perturbed) answer pairs in $t(n)$ time.
Outline

• Baseline for Privacy: Blatant Non-Privacy

• Exponential Time Adversaries

• Polynomial Time Adversaries

• Feasibility result
Exponential Time Adversary

Theorem 2. Let $D = (d, A)$ be a database where A is within $o(n)$ perturbation. Then D is $\exp(n)$-non-private.

[QUERY PHASE]
For all $q \subseteq [n]$: let $\tilde{a}_q \leftarrow A(q)$.

[WEEDING PHASE]
For all $c \in \{0, 1\}^n$: if $|\sum_{i \in q} c_i - \tilde{a}_q| \leq \mathcal{E}$ for all $q \subseteq [n]$ then output c and halt.

$\mathcal{E} = o(n)$
Exponential Time Adversary

Attack always terminates (why?)

• Algorithm considers all database in the weeding phase.
• Original database d is never weeded out.
Exponential Time Adversary

\[\text{dist}(d, c) \leq 4\varepsilon = o(n) \]

Suppose \(\text{dist}(c, d) > 4\varepsilon \).
Let \(q_0 = \{i \mid d_i = 1, c_i = 0\} \), and \(q_1 = \{i \mid d_i = 0, c_i = 1\} \)
\[|q_0| + |q_1| > 4\varepsilon. \] Thus, wlog \(|q_1| > 2\varepsilon \)

\[\sum_{i \in q_1} d_i = 0 \implies A(q_1) < \varepsilon \]

But, \(\sum_{i \in q_1} c_i = |q_1| > 2\varepsilon \)

\[\left| \sum_{i \in q_1} c_i - A(q_1) \right| > \varepsilon \]

Database c would not have passed the weeding phase
Exponential Time Adversary

Theorem 2. Let $D = (d, A)$ be a database where A is within $o(n)$ perturbation. Then D is $\exp(n)$-non-private.

[**QUERY PHASE**]
For all $q \subseteq [n]$: let $\tilde{a}_q \leftarrow A(q)$.

[**Weeding Phase**]
For all $c \in \{0, 1\}^n$: if $|\sum_{i \in q} c_i - \tilde{a}_q| \leq \mathcal{E}$ for all $q \subseteq [n]$ then output c and halt.

With an exponential number of queries, an adversary can reconstruct the entire database **even if error in each query is $o(n)$**
Exponential Time Adversary

• What about $\Theta(n)$ error?

• Error = $n/2$
 – Trivial ...
 – Always answer $n/2$
 – No utility

• Error = $n/40$
 – Hint: Using the proof of the theorem ...
 – Can reconstruct $9/10$ of the database!
Summary of Exponential Adversary

• An adversary who can ask all queries can reconstruct a large fraction of the database with probability 1.

• What if the adversary is only allowed to asked a small set of queries?
Outline

• Baseline for Privacy: Blatant Non-Privacy

• Exponential Time Adversaries

• Polynomial Time Adversaries

• Feasibility Result
Polynomial Time Adversaries

Theorem 3. Let $\mathcal{D} = (d, A)$ be a database where A is within $o(\sqrt{n})$ perturbation then \mathcal{D} is $\text{poly}(n)$-non-private.

[**QUERY PHASE**]
Let $t = n(\log n)^2$. For $1 \leq j \leq t$ choose uniformly at random $q_j \subseteq_R [n]$, and set $\tilde{a}_{q_j} \leftarrow A(q_j)$.

[**WEEDING PHASE**]
Solve the following linear program with unknowns c_1, \ldots, c_n:

\[
\tilde{a}_{q_j} - \mathcal{E} \leq \sum_{i \in q_j} c_i \leq \tilde{a}_{q_j} + \mathcal{E} \quad \text{for } 1 \leq j \leq t
\]

\[
0 \leq c_i \leq 1 \quad \text{for } 1 \leq i \leq n
\]

[**ROUNDING PHASE**]
Let $c'_i = 1$ if $c_i > 1/2$ and $c'_i = 0$ otherwise. Output c'.

Lecture 7 : 590.03 Fall 13
Polynomial Time Adversaries

Theorem 3. Let \(D = (d, A) \) be a database where \(A \) is within \(o(\sqrt{n}) \) perturbation then \(D \) is \(\text{poly}(n) \)-non-private.

[QUERY PHASE]
Let \(t = n(\log n)^2 \). For \(1 \leq j \leq t \) choose uniformly at random \(q_j \subseteq_R [n] \), and set \(\tilde{a}_{q_j} \leftarrow A(q_j) \).

[WEEDING PHASE]
Solve the following linear program with unknowns \(c_1, \ldots, c_n \):

\[
\tilde{a}_{q_j} - \mathcal{E} \leq \sum_{i \in q_j} c_i \leq \tilde{a}_{q_j} + \mathcal{E} \quad \text{for } 1 \leq j \leq t \\
0 \leq c_i \leq 1 \quad \text{for } 1 \leq i \leq n
\]

(1)

[ROUNDING PHASE]
Let \(c'_i = 1 \) if \(c_i > 1/2 \) and \(c'_i = 0 \) otherwise. Output \(c' \).

With \(n \log^2 n \) queries, an adversary can reconstruct the entire database **even if error in each query is** \(o(\sqrt{n}) \)
Summary of negative results

• Attackers can ask multiple questions to the database to learn sensitive information, even when each query answer is perturbed.

• General result
 – Perturbation need not be independent for each query (no assumption on how noise is infused)
 – Subset sum queries are quite general. Just use a random set of queries ...
 – Both exponential time and polynomial time attacks

• Need to think of privacy as a budget-constrained problem
 – Given a perturbation level, there is an upper bound on the number of queries that can be answered.
 – Once the limit is reached, no more queries can be answered.
Outline

• Baseline for Privacy: Blatant Non-Privacy

• Exponential Time Adversaries

• Polynomial Time Adversaries

• Feasibility Result
Tightness of the $o(\sqrt{n})$ bound

- There exists a mechanism that is not blatant non-private, and which can answer $\text{polylog}(T(n))$ queries with $\sqrt{T(n)}$ noise per query.
Not “Blatant non-private”

- Suppose database is drawn uniformly at random from \{0, 1\}^n.

- Consider 2 Turing machines with time complexity \(T(n)\)
 - \(M^A_1\) outputs pairs of queries and perturbed answers using \(A\), and an index \(i\)
 - \(M_2\) takes index \(i\) and all the other values in \(d (d^{-i})\) and outputs \(d_i\).

- We have \((T(n), \delta)\)-privacy if:

\[
\Pr \left[\begin{array}{c} M^A_1(1^n) \text{ outputs } (i, \text{view}) ; \\ M_2(\text{view}, d^{-i}) \text{ outputs } d_i \end{array} \right] < \frac{1}{2} + \delta
\]

- ... a precursor to differential privacy (next class)
Feasibility Result

Theorem 5. Let $T(n) > \text{polylog}(n)$, and let $\delta > 0$. Let DB be the uniform distribution over $\{0,1\}^n$, and $d \in_R DB$. There exists a $\tilde{O}(\sqrt{T(n)})$-perturbation algorithm A such that $D = (d,A)$ is $(T(n),\delta)$-private.

1. Let $a_q = \sum_{i \in q} d_i$.

2. Generate a perturbation value: Let $(e_1, \ldots, e_R) \in_R \{0,1\}^R$ and $\mathcal{E} \leftarrow \sum_{i=1}^R e_i - R/2$.

3. Return $a_q + \mathcal{E}$.
Proof Highlights

• A is a polylog($\sqrt{T(n)}$)-perturbation mechanism

Chernoff Bounds: X_1, \ldots, X_n independent random vars
$X_i \in [0,1], E(X_i) = p$, then

$$\Pr[X_1 + \cdots + X_n > np + x] < e^{-\frac{x^2}{2np(1-p)}}$$

$$\Pr[|\xi| > \log^2 n\sqrt{R}] < 2e^{-\frac{\log^4 n \cdot R}{R/2}} < \text{neg}(n)$$
Proof Highlights

To Show:
Probability that $d_i = 1$ given query answer pairs, and all the bits other than d_i is bounded

\[
p_\ell = \Pr[d_i = 1|a_1, \ldots, a_\ell] < \frac{1}{2} + \delta
\]

\[
p_\ell = p_{\ell-1} \cdot \frac{\Pr[a_\ell|d_i = 1] \cdot \Pr[a_1, \ldots, a_{\ell-1}]}{\Pr[a_1, \ldots, a_\ell]}
\]

\[
1 - p_\ell = (1 - p_{\ell-1}) \cdot \frac{\Pr[a_\ell|d_i = 0] \cdot \Pr[a_1, \ldots, a_{\ell-1}]}{\Pr[a_1, \ldots, a_\ell]}
\]
Proof Highlights

• Adversary’s confidence in $d_i = 1$ after L queries ...

$$\text{conf}_\ell \overset{\text{def}}{=} \log \left(\frac{p_\ell}{1 - p_\ell} \right)$$

• Adversary’s confidence starts at 0, and $\text{conf}_\ell = \text{conf}_{\ell - 1}$, when $i \notin q_i$

• For privacy, we want to show that

$$|\text{conf}_\ell| < \delta' = \log \left(\frac{\frac{1}{2} + \delta}{1/2 - \delta} \right) \text{ for all } 0 < \ell \leq t$$
Proof Highlights

• Confidence depends on all the prior queries. Maybe hard to compute.

\[\text{step}_\ell \overset{\text{def}}{=} \text{conf}_\ell - \text{conf}_{\ell - 1} = \log \left(\frac{\Pr[a_\ell | d_i = 1]}{\Pr[a_\ell | d_i = 0]} \right) \]

• The sequence \(0 = \text{conf}_1, \text{conf}_2, \ldots, \text{conf}_t\) defines a random walk on a line, defined by random variable \(\text{step}_i\).

• We are done if we show that the random walk needs more than \(t\) steps to reach \(\delta’\) ...
Proof Highlights

• Consider two cases when $d_i = 1$ and $d_i = 0$. To get answer a_l in both cases requires different noises k and $k+1$.

$$\text{step}_l = \frac{\Pr[a_l|d_i = 1]}{\Pr[a_l|d_i = 0]} = \frac{\Pr[\mathcal{E} = k]}{\Pr[\mathcal{E} = k + 1]}$$

$$\Pr\left[\text{step}_l = \log \frac{k + 1}{R - k}\right] = \binom{R}{k}/2^k$$

• We can show expectation and absolute value of each step is small.

$$E\left[\sum_l \text{step}_l\right] \leq O\left(\frac{1}{\log^\mu n}\right)$$

$$|\text{step}_l| \leq O\left(\log^2 n / \sqrt{R}\right)$$
Proof Highlights

• Proof can be completed using the Hoeffdings inequality

If X_1, X_2, \ldots, X_n are independent random variables
$s. t. \Pr[|X_i| \leq a] = 1.$

Let $S = X_1 + X_2 + \cdots + X_n$

$$\Pr[S - E(S) > t] < e^{-\frac{t^2}{2na^2}}$$

• The step random variables satisfy all these conditions.
Summary

• Showing feasibility requires defining privacy.

• Privacy defined in terms of adversary’s posterior knowledge

• Algorithm uses additive randomization and maintains no state about previous queries
 – No need for query auditing
 – However there is a bound on the number of queries allowable.

• Precursor to differential privacy
Next class

• Differential Privacy

References:
• Dinur, Nissim, “Revealing information while preserving privacy”, PODS 2003