Differential Privacy

CompSci 590.03
Instructor: Ashwin Machanavajjhala
Announcements

• Please meet with me at least once before you finalize your project (deadline Sep 27).
Outline

- Differential privacy

- Algorithms
 - Deterministic algorithms & Sampling
 - Randomized Response

- Laplace mechanism

- Designing complex algorithms
 - Sequential Composition
 - Parallel Composition
Differential Privacy

An algorithm A satisfies ε-differential privacy if:

For every pair of neighboring tables D_1, D_2 (differ in one individual)
For every output O

$$\Pr[A(D_1) = O] \leq e^\varepsilon \Pr[A(D_2) = O]$$
Neighboring Tables

An algorithm A satisfies ϵ-differential privacy if:

For every pair of neighboring tables D_1, D_2 (differ in one individual)
For every output O

$$\Pr[A(D_1) = O] \leq e^\epsilon \Pr[A(D_2) = O]$$

Neighboring tables differ in:

- Presence or absence of a tuple – $D_2 = D_1 - \{t\}$
- Value of a tuple – $D_1 = D \cup \{x\}$ and $D_2 = D \cup \{y\}$
Why 2 neighboring tables?

Set of all possible input databases

Adversary knows x_1 is either green or red.

Adversary knows exact values for $\{x_2, x_3, ..., x_n\}$

blue, green and red are three possibilities for each x_i.

Lecture 8: 590.03 Fall 13
Why all outputs?

Set of all outputs

\[\text{A}(D_1) = O_1 \]

\[\text{P} [\text{A}(D_1) = O_1] \]

\[\text{A}(D_2) = O_k \]

\[\text{P} [\text{A}(D_2) = O_k] \]
Why all outputs?

For every pair of tables D_1 and D_2, adversary should not be able to distinguish between D_1 and D_2.

Worst discrepancy in probabilities
Privacy parameter ε

An algorithm A satisfies ε-differential privacy if:
For every pair of neighboring tables D_1, D_2 (differ in one individual)
For every output O

$$\Pr[A(D_1) = O] \leq e^\varepsilon \Pr[A(D_2) = O]$$

- Controls the amount of information disclosed to the adversary
- Smaller the ε more the privacy (and better the utility)
Differential Privacy: Summary

An algorithm A satisfies ε-differential privacy if:

For every pair of neighboring tables D_1, D_2 (differ in one individual)
For every output O

$$\Pr[A(D_1) = O] \leq e^\varepsilon \Pr[A(D_2) = O]$$

what the adversary learns about an individual is the same even if the individual is not in the data (or lied about his/her value)
Outline

• Differential privacy

• Algorithms
 – Deterministic algorithms & Sampling
 – Randomized Response

• Laplace mechanism

• Designing complex algorithms
 – Sequential Composition
 – Parallel Composition
Can deterministic algorithms satisfy differential privacy?
Deterministic Algorithms do not satisfy differential privacy

Space of all inputs

Space of all outputs
(at least 2 distinct outputs)
Deterministic Algorithms do not satisfy differential privacy

Each input mapped to a distinct output.
There exist two inputs that differ in one entry mapped to different outputs.
Random Sampling

• Also does not satisfy differential privacy

\[\Pr[D_2 \rightarrow O] = 0 \quad \text{implies} \quad \log \left(\frac{\Pr[D_1 \rightarrow O]}{\Pr[D_2 \rightarrow O]} \right) = \infty \]
Random Sampling

• Also does not satisfy differential privacy

[Chauduri et al., 2006]

• **If uniques are rare**, then differential privacy can be guaranteed with high probability.

Most interesting data have many uniques!
Randomized Response (a.k.a. local randomization)

<table>
<thead>
<tr>
<th>D</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease (Y/N)</td>
<td>Disease (Y/N)</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

With probability p, report true value

With probability $1-p$, report flipped value
Differential Privacy Analysis

• Consider 2 databases \(D, D' \) (of size \(M \)) that differ in the \(j^{th} \) value
 - \(D[j] \neq D'[j] \). But, \(D[i] = D'[i] \), for all \(i \neq j \)

• Consider some output \(O \)

\[
\frac{P(D \rightarrow O)}{P(D' \rightarrow O)} = \frac{\prod_{i=1}^{M} P(D[i] \rightarrow O[i])}{\prod_{i=1}^{M} P(D'[i] \rightarrow O[i])}
\]

\[
= \frac{P(D[j] \rightarrow O[j]) \prod_{i \neq j} P(D[i] \rightarrow O[i])}{P(D'[j] \rightarrow O[j]) \prod_{i \neq j} P(D'[i] \rightarrow O[i])}
\]
Differential Privacy Analysis

• Consider 2 databases D, D' (of size M) that differ in the j^{th} value

 $- D[j] \neq D'[j]$. But, $D[i] = D'[i]$, for all $i \neq j$

• Consider some output O

\[
\frac{P(D \rightarrow O)}{P(D' \rightarrow O)} = \frac{P(D[j] \rightarrow O[j])}{P(D'[j] \rightarrow O[j])} = \begin{cases}
 \frac{p}{1 - p} & \text{if } D[j] = O[j] \\
 \frac{1 - p}{p} & \text{if } D'[j] = O[j]
\end{cases} \leq e^\varepsilon
\]
Differential Privacy Analysis

• Consider 2 databases D, D’ (of size M) that differ in the jth value

 - D[j] ≠ D’[j]. But, D[i] = D’[i], for all i ≠ j

• Consider some output O

\[
\frac{P(D \rightarrow O)}{P(D' \rightarrow O)} \leq e^\varepsilon \iff \frac{1}{1 + e^\varepsilon} < p < \frac{e^\varepsilon}{1 + e^\varepsilon}
\]
Utility Analysis

- Suppose n_1 out of N people replied “yes”, and rest said “no”
- What is the best estimate for π ?
 \[\hat{\pi} = \frac{n_1/n - (1-\pi)}{(2\pi-1)} \]
- $E(\hat{\pi}) = \pi$
- $Var(\hat{\pi}) = \frac{\pi(1-\pi)}{n} + \frac{1}{n(16(p - 0.5)^2 - 0.25)}$

Sampling
 Variance due to coin flips
Outline

• Differential privacy

• Algorithms
 – Deterministic algorithms & Sampling
 – Randomized Response

• Laplace mechanism

• Designing complex algorithms
 – Sequential Composition
 – Parallel Composition
Output Randomization

• Add noise to answers such that:
 – Each answer does not leak too much information about the database.
 – Noisy answers are close to the original answers.
Laplace Mechanism

Privacy depends on the λ parameter

$$h(\eta) \propto \exp(-\eta / \lambda)$$

Mean: 0,
Variance: $2\lambda^2$

Lecture 8 : 590.03 Fall 13
How much noise for privacy?

[Sensitivity]: Consider a function \(q: I \to R \). (call \(q \) a query)

\(S(q) \) is the smallest number s.t. for any neighboring tables \(D, D' \),

\[| q(D) - q(D') | \leq S(q) \]

Thm: If sensitivity of the query is \(S \), then the following guarantees \(\varepsilon \)-differential privacy.

\[\lambda = S/\varepsilon \]
Sensitivity: COUNT query

• Number of people having disease
• Sensitivity = 1

• Solution: $3 + \eta$, where η is drawn from Lap$(1/\varepsilon)$
 – Mean = 0
 – Variance = $2/\varepsilon^2$
 (smaller than case of local randomization)
Sensitivity: SUM query

• Suppose all values x are in [a,b]

• Sensitivity depends on the definition of neighbors

• Neighbors D and D U {t}

 Sensitivity = b

• Neighbors D U {x}, and D U {y}

 Sensitivity = (b-a)
Privacy of Laplace Mechanism

- Consider any two neighboring databases \(D \) and \(D' \)
- Consider some output \(O \)

\[
\frac{\Pr [A(D) = O]}{\Pr [A(D') = O]} = \frac{\Pr [q(D) + \eta = O]}{\Pr [q(D') + \eta = O]}
\]

\[
= \frac{e^{-|O-q(D)|/\lambda}}{e^{-|O-q(D')|/\lambda}}
\]

\[
\leq e^{\left|q(D)-q(D')\right|/\lambda} \leq e^{S(q)/\lambda} = e^\varepsilon
\]
Utility of Laplace Mechanism

• Laplace mechanism works for any function that returns a real number

• Error: $E(\text{true answer} - \text{noisy answer})^2$

 $$= \text{Var}(\text{Lap}(S(q)/\varepsilon))$$

 $$= 2*S(q)^2 / \varepsilon^2$$

• What about sensitivities of more complex functions that return real numbers?
Outline

• Differential privacy

• Algorithms
 – Deterministic algorithms & Sampling
 – Randomized Response

• Laplace mechanism

• Designing complex algorithms
 – Sequential Composition
 – Parallel Composition
HISTOGRAM query

• Each individual in the database takes one out of c categories
 – E.g., {Diabetes, Cancer, Flu, Healthy}

• Return number of people in each category
 – E.g., 4 diabetes, 3 cancer, 2 flu, 3 healthy

• How to answer the histogram query?
HISTOGRAM query

• Suppose neighboring tables are \(D, D \cup \{t\} \)

• Adding or removing a value only changes one of the counts

• Sensitivity:

\[
\max_{D,D'} |q(D) - q(D')|_1
\]

 – Sum of absolute changes in each output.
 – Sensitivity is 1 for the histogram query
HISTOGRAM query

• Laplace Mechanism

\[[m_1, m_2, \ldots, m_c] \rightarrow [m_1 + \eta_1, m_2 + \eta_2, \ldots, m_c + \eta_c] \]

where each \(\eta_i \) is drawn independently from \(\text{Laplace}(1/\varepsilon) \)

• IMPORTANT: Need to add noise to every count in the histogram (even if the count is 0)
Parallel Composition

Let A_1, A_2, \ldots, A_k be ε differentially private algorithms.

Let P_1, P_2, \ldots, P_k be disjoint subsets of the domain.

Then, releasing $A_i(D \cap P_i)$ in parallel also satisfies ε differential privacy.

— The above theorem only works when neighbors are $D, D \cup \{t\}$
HISTOGRAM query

• Suppose neighbors are D U {x}, D U {y}

• How to release histogram query?

• Sensitivity = 2
• Add noise drawn from Lap(2/ε) to each count.
Utility

• Error in the histogram query:

• Neighbors $D, D \cup \{t\}$
 Total error $= 2c/\varepsilon^2$.

• Neighbors $D \cup \{x\}, D \cup \{y\}$
 Total error $= 8c/\varepsilon^2$.
Multiple queries

• Suppose we want to release
 – Histogram of diseases
 – Histogram of ages
 – Histogram of salaries

• Sensitivity(releasing 3 histograms)
 \[= 3 \times \text{Sensitivity(releasing 1 histogram)} \]
 – Adding an individual results in changing one count in each histogram.
 – Changing an individual’s value results in changing 2 counts in each histogram.
Sequential Composition

If algorithms $A_1, A_2, ..., A_k$ use independent randomness and each A_i satisfies ε_i-differential privacy, resp.

Then, outputting $A_1(D), A_2(D), ..., A_k(D)$ together satisfies differential privacy with

$$\varepsilon = \varepsilon_1 + \varepsilon_2 + \ldots + \varepsilon_k$$
Postprocessing

• Suppose A1 satisfies differential privacy, and A2 is another algorithm.

• What can you say about A2 (~A1 (D)~) ?

• Also satisfies differential privacy
Composition

• Sequential composition allows breaking up complex functions into smaller building blocks and dividing the privacy budget amongst these building blocks.

• Parallel composition ensures that privacy budget is efficiently utilized (when acting on disjoint subsets of the data)

• Postprocessing does not impact privacy
 – Very useful as we will see in later classes.
Summary

• Differential privacy is a formal methodology for privacy protection.
 – Ensures that presence, absence or change in a single individual’s value does not significantly impact output of the algorithm
 – Epsilon tunes the privacy utility tradeoff

• Output perturbation is an effective method
 – Adding noise from a Laplace distribution ensures differential privacy
 – Deterministic algorithms and sampling don’t satisfy the condition

• Composition helps design complex privacy algorithms
 – Sequential and parallel composition