Relational Model and Algebra
Introduction to Databases
CompSci 316 Fall 2014

Announcements (Thu. Aug. 28)
• Registration
 • As a courtesy to others, please add/drop ASAP
 • Tonight: permission #’s will be emailed to 18 on the wait list
 • Monday evening: another round of permission #’s
 • If you are not on the official wait list, check
 [link to check wait list]
• UTAs and office hours to be announced soon
• Next week
 • Brett will run the class (I will be away at a conference)
 • Tuesday: lab to help with setup, VM, RA—bring laptop!
 • Thursday: relational database design
• Homework #1 assigned; due in ~2 weeks
 • Sign up for Gradiance and Piazza
 • Wait for our email to start setting up VM (and signing up for
 Amazon if needed)

Edgar F. Codd (1923-2003)
• Pilot in the Royal Air Force in WW2
• Inventor of the relational model and algebra while at IBM
• Turing Award, 1981

[link to Codd's Wikipedia page]
Relational data model

- A database is a collection of relations (or tables)
- Each relation has a set of attributes (or columns)
- Each attribute has a name and a domain (or type)
 - Set-valued attributes are not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are duplicates if they agree on all attributes

> Simplicity is a virtue!

Example

User

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>uid</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group

<table>
<thead>
<tr>
<th>gid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Book Club</td>
</tr>
<tr>
<td>gov</td>
<td>Student Government</td>
</tr>
<tr>
<td>dps</td>
<td>Dead Putting Society</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Member

<table>
<thead>
<tr>
<th>gid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>656</td>
<td>abc</td>
</tr>
<tr>
<td>656</td>
<td>gov</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ordering of rows doesn't matter (even though output is always in some order)

Schema vs. instance

- **Schema** (metadata)
 - Specifies how the logical structure of data
 - Is defined at setup time
 - Rarely changes
- **Instance**
 - Represents the data content
 - Changes rapidly, but always conforms to the schema

> Compare to type vs. objects of type in a programming language
Example

- Schema
 - User (uid int, name string, age int, GPA float)
 - Group (gid string, name string)
 - Member (uid int, gid string)
- Instance
 - User: \{\{142, Bart, 10, 0.9\}, \{857, Milhouse, 10, 0.2\}, ...\}
 - Group: \{\{abc, BookClub\}, \{gov, StudentGovernment\}, ...\}
 - Member: \{\{142, dps\}, \{123, gov\}, ...\}

Relational algebra

A language for querying relational data based on “operators”

- Core operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection

- Input: a table \(R \)
- Notation: \(\sigma_p R \)
 - \(p \) is called a selection condition (or predicate)
- Purpose: filter rows according to some criteria
- Output: same columns as \(R \), but only rows or \(R \) that satisfy \(p \)
Selection example

- Users with popularity higher than 0.5

\[\sigma_{\text{pop} > 0.5} \text{User} \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

More on selection

- Selection condition can include any column of \(R \), constants, comparison (\(=, \leq \), etc.) and Boolean connectives (\(\land \): and, \(\lor \): or, \(\neg \): not)
- Example: users with popularity at least 0.9 and age under 10 or above 12

\[\sigma_{\text{pop} \geq 0.9 \land (\text{age} < 10 \lor \text{age} > 12)} \text{User} \]

- You must be able to evaluate the condition over a single row of the input table!
- Example: the most popular user

\[\sigma_{\text{pop} \geq \text{every user}} \text{User} \]

Wrong!

Projection

- Input: a table \(R \)
- Notation: \(\pi_L R \)
- \(L \) is a list of columns in \(R \)
- Purpose: output chosen columns
- Output: same rows, but only the columns in \(L \)
Projection example

- IDs and names of all users

\[\pi_{uid, name} User \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

More on projection

- Duplicate output rows are removed (by definition)
- Example: user ages

\[\pi_{age} User \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Cross product

- Input: two tables R and S
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each \(s \) in \(S \), output a row \(r \times s \) (concatenation of \(r \) and \(s \))
Cross product example

User \times Member

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>abc</td>
</tr>
</tbody>
</table>

A note a column ordering

• Ordering of columns is unimportant as far as contents are concerned

Derived operator: join

(A.k.a. “theta-join")

• Input: two tables R and S
• Notation: $R \bowtie_p S$
 • p is called a join condition (or predicate)
• Purpose: relate rows from two tables according to some criteria
• Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p
• Shorthand for $\sigma_p (R \times S)$
Join example

- Info about users, plus IDs of their groups
 \[User \bowtie_{user.uid=Member.uid} Member \]

Prefix a column reference with table name and "." to disambiguate identically named columns from different tables.

Derived operator: natural join

- Input: two tables \(R \) and \(S \)
- Notation: \(R \bowtie S \)
- Purpose: relate rows from two tables, and
 - Enforce equality between identically named columns
 - Eliminate one copy of identically named columns
- Shorthand for \(\pi_L (R \bowtie_p S) \), where
 - \(p \) equates each pair of columns common to \(R \) and \(S \)
 - \(L \) is the union of column names from \(R \) and \(S \) (with duplicate columns removed)

Natural join example

\[User \bowtie Member = \pi_{uid,name,age,pop,gid} (User \bowtie_{user.uid=Member.uid} Member) \]
Union

- Input: two tables R and S
- Notation: $R \cup S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S (with duplicate rows removed)

Difference

- Input: two tables R and S
- Notation: $R - S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not in S

Derived operator: intersection

- Input: two tables R and S
- Notation: $R \cap S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S
- Shorthand for $R - (R - S)$
- Also equivalent to $S - (S - R)$
- And to $R \nleq S$
Renaming

- **Input:** a table R and S
- **Notation:** $\rho_S R$, $\rho_{(A_1, A_2, \ldots)} R$, or $\rho_{S(A_1, A_2, \ldots)} R$
- **Purpose:** "rename" a table and/or its columns
- **Output:** a table with the same rows as R, but called differently
- **Used to**
 - Avoid confusion caused by identical column names
 - Create identical column names for natural joins
- **As with all other relational operators, it doesn’t modify the database**
 - Think of the renamed table as a copy of the original

Renaming example

- **IDs of users who belong to at least two groups**

Expression tree notation

```
\pi_{uid_1}
\delta_{uid_1=uid_2 \land gid_1 \neq gid_2}
\rho_{uid_1, gid_1}
\rho_{uid_2, gid_2}
```

Member
Summary of core operators

- Selection: $\sigma_{p}R$
- Projection: $\pi_{q}R$
- Cross product: $R \times S$
- Union: $R \cup S$
- Difference: $R - S$
- Renaming: $\rho_{S(a_{1}, a_{2}, \ldots)}R$
 - Does not really add “processing” power

Summary of derived operators

- Join: $R \bowtie_{p} S$
- Natural join: $R \bowtie S$
- Intersection: $R \cap S$

- Many more
 - Semijoin, anti-semijoin, quotient, ...

An exercise

- Names of users in Lisa’s groups

Writing a query bottom-up: Their names

Users in
Lisa’s groups

Lisa’s groups

Who’s Lisa?

\texttt{name="Lisa"}

\texttt{User}
Another exercise

- IDs of groups that Lisa doesn’t belong to

Writing a query top-down:

- All group IDs
- IDs of Lisa’s groups
- \(\pi_{gid} \)
 - Group
- \(\pi_{gid} \)
 - Member
 - \(\sigma_{name='Lisa'} \)
 - User

A trickier exercise

- Who are the most popular?

Monotone operators

- Add more rows to the input...
- RelOp
- What happens to the output?

- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain “correct” when more rows are added to the input
- Formally, for a monotone operator \(op \):
 - \(R \subseteq R' \) implies \(op(R) \subseteq op(R') \) for any \(R, R' \)
Classification of relational operators

- Selection: $\sigma_p R$
- Projection: $\pi_j R$
- Cross product: $R \times S$
- Join: $R \bowtie_p S$
- Natural join: $R \bowtie S$
- Union: $R \cup S$
- Difference: $R - S$
- Intersection: $R \cap S$

Why is “−” needed for “highest”?

- Composition of monotone operators produces a monotone query
- Old output rows remain “correct” when more rows are added to the input
- Is the “highest” query monotone?

So it must use difference!

Why do we need core operator X?

- Difference
- Cross product
- Union
- Selection? Projection?
Extensions to relational algebra

• Duplicate handling ("bag algebra")
• Grouping and aggregation
• "Extension" (or "extended projection") to allow new column values to be computed

> All these will come up when we talk about SQL
> But for now we will stick to standard relational algebra without these extensions

Why is r.a. a good query language?

• Simple
 • A small set of core operators
 • Semantics are easy to grasp
• Declarative?
 • Yes, compared with older languages like CODASYL
 • Though operators do look somewhat "procedural"
• Complete?
 • With respect to what?

Relational calculus

• \{ u.uid \mid u \in User \land
\neg (\exists u' \in User: u.pop < u'.pop) \}, or
• \{ u.uid \mid u \in User \land
(\forall u' \in User: u.pop \geq u'.pop) \}
• Relational algebra = "safe" relational calculus
 • Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 • And vice versa
• Example of an "unsafe" relational calculus query
 • \{ u.name \mid \neg (u \in User) \}
 • Cannot evaluate it just by looking at the database
Turing machine

- A conceptual device that can execute any computer algorithm
- Approximates what general-purpose programming languages can do
 - E.g., Python, Java, C++, ...

So how does relational algebra compare with a Turing machine?

Limits of relational algebra

- Relational algebra has no recursion
 - Example: given relation Friend(uid1, uid2), who can Bart reach in his social network with any number of hops?
 - Writing this query in r.a. is impossible!
 - So r.a. is not as powerful as general-purpose languages
- But why not?
 - Optimization becomes undecidable
 - Simplicity is empowering
 - Besides, you can always implement it at the application level, and recursion is added to SQL nevertheless!