Relational Model and Algebra

Introduction to Databases
CompSci 316 Fall 2014
Announcements (Thu. Aug. 28)

• Registration
 • As a courtesy to others, please add/drop ASAP
 • Tonight: permission #’s will be emailed to 18 on the wait list
 • Monday evening: another round of permission #’s
 • If you are not on the official wait list, check
 http://www.cs.duke.edu/courses/fall14/compsci316/duke-only/more-wait-list.txt

• UTAs and office hours to be announced soon

• Next week
 • Brett will run the class (I will be away at a conference)
 • Tuesday: lab to help with setup, VM, RA—bring laptop!
 • Thursday: relational database design

• Homework #1 assigned; due in ~2 weeks
 • Sign up for Gradiance and Piazza
 • Wait for our email to start setting up VM (and signing up for Amazon if needed)
Edgar F. Codd (1923-2003)

- Pilot in the Royal Air Force in WW2
- Inventor of the relational model and algebra while at IBM
- Turing Award, 1981
Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)
 • Set-valued attributes are not allowed
• Each relation contains a set of tuples (or rows)
 • Each tuple has a value for each attribute of the relation
 • Duplicate tuples are not allowed
 • Two tuples are duplicates if they agree on all attributes

☞ Simplicity is a virtue!
Example

User

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Group

<table>
<thead>
<tr>
<th>gid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Book Club</td>
</tr>
<tr>
<td>gov</td>
<td>Student Government</td>
</tr>
<tr>
<td>dps</td>
<td>Dead Putting Society</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Member

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though output is always in some order)
Schema vs. instance

• **Schema (metadata)**
 • Specifies how the logical structure of data
 • Is defined at setup time
 • Rarely changes

• **Instance**
 • Represents the data content
 • Changes rapidly, but always conforms to the schema

Compare to **type vs. objects of type** in a programming language
Example

• Schema
 • User (uid int, name string, age int, pop float)
 • Group (gid string, name string)
 • Member (uid int, gid string)

• Instance
 • User: \{\{142, Bart, 10, 0.9\}, \{857, Milhouse, 10, 0.2\}, \ldots\}
 • Group: \{\{abc, Book Club\}, \{gov, Student Government\}, \ldots\}
 • Member: \{\{142, dps\}, \{123, gov\}, \ldots\}
Relational algebra

A language for querying relational data based on “operators”

• Core operators:
 • Selection, projection, cross product, union, difference, and renaming

• Additional, derived operators:
 • Join, natural join, intersection, etc.

• Compose operators to make complex queries
Selection

• Input: a table R
• Notation: $\sigma_p R$
 • p is called a selection condition (or predicate)
• Purpose: filter rows according to some criteria
• Output: same columns as R, but only rows or R that satisfy p
Selection example

• Users with popularity higher than 0.5

\[\sigma_{pop>0.5}User \]
More on selection

• Selection condition can include any column of R, constants, comparison ($=, \leq$, etc.) and Boolean connectives (\land: and, \lor: or, \neg: not)
 • Example: users with popularity at least 0.9 and age under 10 or above 12
 $$\sigma_{\text{pop} \geq 0.9 \land (\text{age} < 10 \lor \text{age} > 12)} \text{User}$$

• You must be able to evaluate the condition over a single row of the input table!
 • Example: the most popular user
 $$\sigma_{\text{pop} \geq \text{every pop in User}} \text{User}$$

WRONG!
Projection

• Input: a table R
• Notation: $\pi_L R$
 • L is a list of columns in R
• Purpose: output chosen columns
• Output: same rows, but only the columns in L
Projection example

- IDs and names of all users

\[\pi_{uid, name} \text{ User} \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The projection \(\pi_{uid, name} \text{ User} \) selects columns \(uid \) and \(name \) from the \text{ User} relation.
More on projection

• Duplicate output rows are removed (by definition)
 • Example: user ages
 $$\pi_{age} User$$

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$$\pi_{uid,name}$$
Cross product

- Input: two tables R and S
- Natation: $R \times S$
- Purpose: pairs rows from two tables
- Output: for each row r in R and each s in S, output a row rs (concatenation of r and s)
Cross product example

User × Member

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
A note a column ordering

- Ordering of columns is unimportant as far as contents are concerned

So cross product is **commutative**, i.e., for any R and S, $R \times S = S \times R$ (up to the ordering of columns)
Derived operator: join

(A.k.a. “theta-join”)

• Input: two tables R and S
• Notation: $R \bowtie_p S$
 • p is called a join condition (or predicate)
• Purpose: relate rows from two tables according to some criteria
• Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p
• Shorthand for $\sigma_p(R \times S)$
Join example

• Info about users, plus IDs of their groups

\[\text{User} \bowtie_{\text{User.uid} = \text{Member.uid}} \text{Member} \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Prefix a column reference with table name and “.” to disambiguate identically named columns from different tables.

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Derived operator: natural join

• Input: two tables R and S
• Notation: $R \bowtie S$
• Purpose: relate rows from two tables, and
 • Enforce equality between identically named columns
 • Eliminate one copy of identically named columns
• Shorthand for $\pi_L (R \bowtie^p S)$, where
 • p equates each pair of columns common to R and S
 • L is the union of column names from R and S (with duplicate columns removed)
Natural join example

\[User \bowtie Member = \pi_{uid, name, age, pop, gid} \left(User \bowtie_{uid=Member.uid} Member \right) \]

\[= \pi_{uid, name, age, pop, gid} \left(User \bowtie User.uid=Member.uid \right) \]
Union

• Input: two tables R and S

• Notation: $R \cup S$
 • R and S must have identical schema

• Output:
 • Has the same schema as R and S
 • Contains all rows in R and all rows in S (with duplicate rows removed)
Difference

• Input: two tables R and S
• Notation: $R - S$
 • R and S must have identical schema
• Output:
 • Has the same schema as R and S
 • Contains all rows in R that are not in S
Derived operator: intersection

- Input: two tables R and S
- Notation: $R \cap S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S
- Shorthand for $R \setminus (R \setminus S)$
- Also equivalent to $S \setminus (S \setminus R)$
- And to $R \bowtie S$
Renaming

• Input: a table R and S
• Notation: $\rho_S R$, $\rho_{(A_1,A_2,...)} R$, or $\rho_{S(A_1,A_2,...)} R$
• Purpose: “rename” a table and/or its columns
• Output: a table with the same rows as R, but called differently
• Used to
 • Avoid confusion caused by identical column names
 • Create identical column names for natural joins
• As with all other relational operators, it doesn’t modify the database
 • Think of the renamed table as a copy of the original
Renaming example

• IDs of users who belong to at least two groups

\[\pi_{\text{uid}} \left(\text{Member} \bowtie \exists ? \text{ Member} \right) \]
\[\pi_{\text{uid}} \left(\text{Member} \bowtie \exists \text{Member.uid=Member.uid } \land \text{Member.gid } \neq \text{Member.gid} \right) \]

\[\pi_{\text{uid}_1} \left(\begin{array}{c}
\rho(\text{uid}_1,\text{gid}_1) \text{Member} \\
\bowtie \text{uid}_1=\text{uid}_2 \land \text{gid}_1 \neq \text{gid}_2 \\
\rho(\text{uid}_2,\text{gid}_2) \text{Member}
\end{array} \right) \]

\text{WRONG!}
Expression tree notation

\[
\begin{align*}
\pi_{uid_1} & \bowtie uid_1 = uid_2 \land gid_1 \neq gid_2 \\
\rho(uid_1, gid_1) & \bowtie Member \\
\rho(uid_2, gid_2) & \bowtie Member
\end{align*}
\]
Summary of core operators

- **Selection:** $\sigma_p R$
- **Projection:** $\pi_L R$
- **Cross product:** $R \times S$
- **Union:** $R \cup S$
- **Difference:** $R - S$
- **Renaming:** $\rho_S(A_1, A_2, \ldots) R$
 - Does not really add “processing” power
Summary of derived operators

• Join: $R \bowtie_p S$
• Natural join: $R \bowtie S$
• Intersection: $R \cap S$

• Many more
 • Semijoin, anti-semijoin, quotient, ...
An exercise

- Names of users in Lisa’s groups

Writing a query bottom-up:

Their names π_{name}

Users in Lisa’s groups π_{uid}

Lisa’s groups π_{gid}

Who’s Lisa?

$\sigma_{name=\text{"Lisa"}}$

User

Member
Another exercise

• IDs of groups that Lisa doesn’t belong to

Writing a query top-down:
A trickier exercise

• Who are the most popular?
 • Who do NOT have the highest pop rating?
 • Whose pop is lower than somebody else’s?

A deeper question:
When (and why) is “—” needed?
Monotone operators

• If some old output rows may need to be removed
 • Then the operator is non-monotone

• Otherwise the operator is monotone
 • That is, old output rows always remain “correct” when more rows are added to the input

• Formally, for a monotone operator \(op \):
 \(R \subseteq R' \) implies \(op(R) \subseteq op(R') \) for any \(R, R' \)
Classification of relational operators

- Selection: $\sigma_p R$ Monotone
- Projection: $\pi_L R$ Monotone
- Cross product: $R \times S$ Monotone
- Join: $R \bowtie_p S$ Monotone
- Natural join: $R \bowtie S$ Monotone
- Union: $R \cup S$ Monotone
- Difference: $R - S$ Monotone w.r.t. R; non-monotone w.r.t S
- Intersection: $R \cap S$ Monotone
Why is “—” needed for “highest”?

- Composition of monotone operators produces a monotone query
 - Old output rows remain “correct” when more rows are added to the input
- Is the “highest” query monotone?
 - No!
 - Current highest pop is 0.9
 - Add another row with pop 0.91
 - Old answer is invalidated

☞ So it must use difference!
Why do we need core operator X?

- Difference
 - The only non-monotone operator

- Cross product
 - The only operator that adds columns

- Union
 - The only operator that allows you to add rows?
 - A more rigorous argument?

- Selection? Projection?
 - Homework problem
Extensions to relational algebra

• Duplicate handling ("bag algebra")
• Grouping and aggregation
• “Extension” (or “extended projection”) to allow new column values to be computed

☞ All these will come up when we talk about SQL
☞ But for now we will stick to standard relational algebra without these extensions
Why is r.a. a good query language?

• Simple
 • A small set of core operators
 • Semantics are easy to grasp

• Declarative?
 • Yes, compared with older languages like CODASYL
 • Though operators do look somewhat “procedural”

• Complete?
 • With respect to what?
Relational calculus

- \{u.\textit{uid} \mid u \in \textit{User} \land \\
\neg (\exists u' \in \textit{User} : u.\textit{pop} < u'.\textit{pop})\}, or

- \{u.\textit{uid} \mid u \in \textit{User} \land \\
(\forall u' \in \textit{User} : u.\textit{pop} \geq u'.\textit{pop})\}

- Relational algebra = “safe” relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa

- Example of an “unsafe” relational calculus query
 - \{u.\textit{name} \mid \neg (u \in \textit{User})\}
 - Cannot evaluate it just by looking at the database
Turing machine

• A conceptual device that can execute any computer algorithm

• Approximates what general-purpose programming languages can do
 • E.g., Python, Java, C++, ...

☞ So how does relational algebra compare with a Turing machine?

Limits of relational algebra

• Relational algebra has no recursion
 • Example: given relation $\text{Friend}(\text{uid}_1, \text{uid}_2)$, who can Bart reach in his social network with any number of hops?
 • Writing this query in r.a. is impossible!
 • So r.a. is not as powerful as general-purpose languages

• But why not?
 • Optimization becomes undecidable
 ⚫ Simplicity is empowering
 • Besides, you can always implement it at the application level, and recursion is added to SQL nevertheless!