Query Optimization

Introduction to Databases
CompSci 316 Fall 2014
Announcements (Thu., Nov. 20)

• **Project demo** period Dec. 5-9
 • Early in-class demo
 • Watch for my email about signing up for a demo slot

• **Homework #4 deadline extended by a week**
Announcements (Tue., Nov. 25)

• Homework #4 due a week from now
• Homework #3 graded
• Project demo period
 • Next Thursday (in class) through the following Tuesday
 • See email; sign up by Monday!
• Final exam Dec. 10 7-10pm
 • Open-book, open-notes
 • Comprehensive, but strong emphasis on the second half of the course
Query optimization

- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do
Plan enumeration in relational algebra

- Apply relational algebra equivalences

Join reordering: \times and \bowtie are associative and commutative (except column ordering, but that is unimportant)
More relational algebra equivalences

• Convert $\sigma_p \times$ to/from \bowtie_p: $\sigma_p (R \times S) = R \bowtie_p S$
• Merge/split σ’s: $\sigma_{p_1} (\sigma_{p_2} R) = \sigma_{p_1 \land p_2} R$
• Merge/split π’s: $\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1} R$, where $L_1 \subseteq L_2$
• Push down/pull up σ: $\sigma_{p \land p_r \land p_s} (R \bowtie_p' S) = (\sigma_{p_r} R) \bowtie_{p \land p'} (\sigma_{p_s} S)$, where
 • p_r is a predicate involving only R columns
 • p_s is a predicate involving only S columns
 • p and p' are predicates involving both R and S columns
• Push down π: $\pi_L (\sigma_p R) = \pi_L \left(\sigma_p (\pi_{L'L'} R) \right)$, where
 • L' is the set of columns referenced by p that are not in L
• Many more (seemingly trivial) equivalences...
 • Can be systematically used to transform a plan to new ones
Relational query rewrite example

\[\pi_{\text{Group.name}} \left(User.\text{name} = \text{“Bart”} \land User.\text{uid} = Member.\text{uid} \land Member.\text{gid} = Group.\text{gid} \right) \]

\[\sigma_{\text{User.\text{name} = “Bart”}} \left(User \times \left(\pi_{\text{Group.name}} \left(\sigma_{\text{User.\text{uid} = Member.\text{uid}}} \left(Group \times Member \right) \right) \right) \right) \]

Push down \(\sigma\)

Convert \(\sigma_p \times\) to \(\bowtie_p\)
Heuristics-based query optimization

• Start with a logical plan

• Push selections/projections down as much as possible
 • Why? Reduce the size of intermediate results
 • Why not? May be expensive; maybe joins filter better

• Join smaller relations first, and avoid cross product
 • Why? Reduce the size of intermediate results
 • Why not? Size depends on join selectivity too

• Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)
SQL query rewrite

• More complicated—subqueries and views divide a query into nested “blocks”
 • Processing each block separately forces particular join methods and join order
 • Even if the plan is optimal for each block, it may not be optimal for the entire query

• Unnest query: convert subqueries/views to joins

We can just deal with select-project-join queries
 • Where the clean rules of relational algebra apply
SQL query rewrite example

- SELECT name
 FROM User
 WHERE uid = ANY (SELECT uid FROM Member);

- SELECT name
 FROM User, Member
 WHERE User.uid = Member.uid;
 - Wrong—consider two Bart’s, each joining two groups

- SELECT name
 FROM (SELECT DISTINCT User.uid, name
 FROM User, Member
 WHERE User.uid = Member.uid);
 - Right—assuming User.uid is a key
Dealing with correlated subqueries

- SELECT gid FROM Group
 WHERE name LIKE 'Springfield%
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

- SELECT gid
 FROM Group, (SELECT gid, COUNT(*) AS cnt
 FROM Member GROUP BY gid) t
 WHERE t.gid = Group.gid AND min_size > t.cnt
 AND name LIKE 'Springfield%';

 - New subquery is inefficient (it computes the size for every group)
 - Suppose a group is empty?
“Magic” decorrelation

- SELECT gid FROM Group
 WHERE name LIKE 'Springfield%
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

- WITH Supp_Group AS
 (SELECT * FROM Group WHERE name LIKE 'Springfield%'),
Magic AS
 (SELECT DISTINCT gid FROM Supp_Group),
DS AS
 ((SELECT Group.gid, COUNT(*) AS cnt
 FROM Magic, Member WHERE Magic.gid = Member.gid
 GROUP BY Member.gid) UNION
 (SELECT gid, 0 AS cnt
 FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;

Process the outer query without the subquery
Collect bindings
Evaluate the subquery with bindings
Finally, refine the outer query
Heuristics- vs. cost-based optimization

- **Heuristics-based optimization**
 - Apply heuristics to rewrite plans into cheaper ones

- **Cost-based optimization**
 - **Rewrite** logical plan to combine “blocks” as much as possible
 - **Optimize** query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

Input to \text{SORT}(\text{gid}):

\begin{itemize}
 \item \text{PROJECT (Group.title)}
 \item \text{MERGE-JOIN (gid)}
 \item \text{SCAN (Group)}
 \item \text{SORT (gid)}
 \item \text{SCAN (Member)}
 \item \text{MERGE-JOIN (uid)}
 \item \text{SORT (uid)}
 \item \text{SCAN (User)}
 \item \text{FILTER (name = “Bart”)}
\end{itemize}

• We have: cost estimation for each operator
 • Example: \text{SORT}(\text{gid}) takes $O(B(\text{input}) \times \log_M B(\text{input}))$
 • But what is $B(\text{input})$?
• We need: size of intermediate results
Cardinality estimation

http://www.learningresources.com/product/estimation+station.do
Selections with equality predicates

• $Q: \sigma_{A=v}R$

• Suppose the following information is available
 • Size of R: $|R|$
 • Number of distinct A values in R: $|\pi_A R|$

• Assumptions
 • Values of A are uniformly distributed in R
 • Values of v in Q are uniformly distributed over all $R.A$ values

• $|Q| \approx \frac{|R|}{|\pi_A R|}$
 • Selectivity factor of $(A = v)$ is $\frac{1}{|\pi_A R|}$
Conjunctive predicates

- Q: $\sigma_{A=u} \land B=v^R$

- Additional assumptions
 - $(A = u)$ and $(B = v)$ are independent
 - Counterexample: major and advisor
 - No “over”-selection
 - Counterexample: A is the key

- $|Q| \approx \frac{|R|}{|\pi_AR| \cdot |\pi_BR|}$
 - Reduce total size by all selectivity factors
Negated and disjunctive predicates

• $Q: \sigma_{A \neq v} R$
 - $|Q| \approx |R| \cdot \left(1 - \frac{1}{|\pi_{AR}|}\right)$
 - Selectivity factor of $\neg p$ is $(1 - \text{selectivity factor of } p)$

• $Q: \sigma_{A = u \lor B = v} R$
 - $|Q| \approx |R| \cdot \left(\frac{1}{|\pi_{AR}|} + \frac{1}{|\pi_{BR}|}\right)$?
 - No! Tuples satisfying $(A = u)$ and $(B = v)$ are counted twice
 - $|Q| \approx |R| \cdot \left(\frac{1}{|\pi_{AR}|} + \frac{1}{|\pi_{BR}|} - \frac{1}{|\pi_{AR}||\pi_{BR}|}\right)$
 - Inclusion-exclusion principle
Range predicates

• $Q: \sigma_{A > v} R$

• Not enough information!
 • Just pick, say, $|Q| \approx |R| \cdot 1/3$

• With more information
 • Largest R.A value: $\text{high}(R.A)$
 • Smallest R.A value: $\text{low}(R.A)$
 • $|Q| \approx |R| \cdot \frac{\text{high}(R.A) - v}{\text{high}(R.A) - \text{low}(R.A)}$

• In practice: sometimes the second highest and lowest are used instead
 • The highest and the lowest are often used by inexperienced database designer to represent invalid values!
Two-way equi-join

• \(Q: R(A, B) \Join S(A, C) \)
• Assumption: containment of value sets
 • Every tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation
 • That is, if \(|\pi_A R| \leq |\pi_A S| \) then \(\pi_A R \subseteq \pi_A S \)
 • Certainly not true in general
 • But holds in the common case of foreign key joins

• \(|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)} \)
 • Selectivity factor of \(R. A = S. A \) is \(\frac{1}{\max(|\pi_A R|, |\pi_A S|)} \)
Multiway equi-join

• $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$

• What is the number of distinct C values in the join of R and S?

• Assumption: preservation of value sets
 • A non-join attribute does not lose values from its set of possible values
 • That is, if A is in R but not S, then $\pi_A (R \bowtie S) = \pi_A R$
 • Certainly not true in general
 • But holds in the common case of foreign key joins (for value sets from the referencing table)
Multiway equi-join (cont’d)

• \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)

• Start with the product of relation sizes
 • \(|R| \cdot |S| \cdot |T|\)

• Reduce the total size by the selectivity factor of each join predicate
 • \(R.B = S.B: \frac{1}{\max(|\pi_B R|, |\pi_B S|)}\)
 • \(S.C = T.C: \frac{1}{\max(|\pi_C S|, |\pi_C T|)}\)
 • \(|Q| \approx \frac{|R| \cdot |S| \cdot |T|}{\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)}\)
Cost estimation: summary

• Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)

• Lots of assumptions and very rough estimation
 • Accurate estimate is not needed
 • Maybe okay if we overestimate or underestimate consistently
 • May lead to very nasty optimizer “hints”

 \[
 \text{SELECT * FROM User WHERE pop > 0.9;}
 \]

 \[
 \text{SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;}
 \]

• Not covered: better estimation using histograms
Search strategy
Search space

• Huge!

• “Bushy” plan example:

• Just considering different join orders, there are \(\frac{(2n-2)!}{(n-1)!} \) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n \)
 • 30240 for \(n = 6 \)

• And there are more if we consider:
 • Multiway joins
 • Different join methods
 • Placement of selection and projection operators
Left-deep plans

• Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 • Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree

• How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?
 • Significantly fewer, but still lots—$n!$ (720 for $n = 6$)
A greedy algorithm

• S_1, \ldots, S_n
 • Say selections have been pushed down; i.e., $S_i = \sigma_p(R_i)$

• Start with the pair S_i, S_j with the smallest estimated size for $S_i \bowtie S_j$

• Repeat until no relation is left:
 Pick S_k from the remaining relations such that the join of S_k and the current result yields an intermediate result of the smallest size

Pick most efficient join method
Minimize expected size
Current subplan

Remaining relations to be joined

$..., S_k, S_l, S_m, ...$
A dynamic programming approach

• Generate optimal plans **bottom-up**
 • Pass 1: Find the best single-table plans (for each table)
 • Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 • ...
 • Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 • ...
• Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)

☞ Well, not quite...
The need for “interesting order”

• Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
• Best plan for $R \bowtie S$: hash join (beats sort-merge join)
• Best overall plan: sort-merge join R and S, and then sort-merge join with T
 • Subplan of the optimal plan is not optimal!
• Why?
 • The result of the sort-merge join of R and S is sorted on A
 • This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)!
Dealing with interesting orders

When picking the best plan

• Comparing their costs is not enough
 • Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
 • Plans are now partially ordered
 • Plan X is better than plan Y if
 • Cost of X is lower than Y, and
 • Interesting orders produced by X “subsume” those produced by Y

• Need to keep a set of optimal plans for joining every combination of k tables
 • At most one for each interesting order
Summary

• Relational algebra equivalence
• SQL rewrite tricks
• Heuristics-based optimization
• Cost-based optimization
 • Need statistics to estimate sizes of intermediate results
 • Greedy approach
 • Dynamic programming approach