
ASSIGNMENT 4 COURSE: COMPSCI 330

Due on November 26th, 2014
100 points total

General Directions: If you are asked to provide an algorithm, you should clearly define each step
of the procedure, establish its correctness, and then analyze its overall running time. There is no
need to write pseudo-code; an unambiguous description of your algorithm in plain text will suffice.

All the answers must be typed, preferably using LaTeX. If you are unfamiliar with LaTeX, you
are strongly encouraged to learn it. However, answers typed in other text processing software and
properly converted to a pdf file will also be accepted. Before submitting the pdf file, please make
sure that it can be opened using any standard pdf reader (such as Acrobat Reader) and your entire
answer is readable. Handwritten answers or pdf files that cannot be opened will not be graded
and will not receive any credit.

Finally, please read the detailed collaboration policy given on the course website. You are not
allowed to discuss homework problems in groups of more than 3 students. Failure to adhere to
these guidelines will be promptly reported to the relevant authority without exception.

November 18, 2014 Page 1

ASSIGNMENT 4 COURSE: COMPSCI 330

Problem 1 (20 points)
Let X be a set of n points in the plane. A point p in X is Pareto-optimal if no other point in X

is both above and to the right of p. The Pareto-optimal points can be connected by horizontal and
vertical lines into the staircase of X , with a Pareto-optimal point at the top right corner of each step.

(i) Describe an algorithm to compute the staircase of a given set of n points in the plane in O(nh)

time, where h is the number of Pareto-optimal points.

(ii) Describe an algorithm to compute the staircase of a given set of n points in the plane in
O(n log n) time.

In both parts, you may assume that no two points have the same x- or y-coordinates. The output
should be a linked list of Pareto-optimal points in left to right order.

Problem 2 (20 points)
(Revisiting Huffman Codes) Let Σ be an alphabet. For each character c ∈ Σ, let pc be the given
frequency of c given as a probability; therefore,

∑
c∈Σ pc = 1.

Our goal here is to compute a binary prefix encoding for the characters in Σ. Namely, our
algorithm must map each character in c to a unique binary string bc with length `c such that bc is not
the first `c characters of another binary string bc′ in the encoding (this is our “prefix” constraint).
The objective is to find the encoding that minimizes

∑
c∈Σ(`c · pc) (which in some sense is the

expected length of a document written in alphabet Σ that uses the computed encoding).

One way to represent such an encoding is with a binary tree T : Each character c ∈ Σ corre-
sponds to a leaf in T . To obtain the encoding for a character c, we build bc by repeatedly concate-
nating 0s and 1s based on the path from the root to c in T . Starting at the root, if we traverse to a left
child we concatenate a 0, and if we traverse to a right child we concatenate a 1 (it is straightforward
to show that this process does indeed give us a prefix encoding).

It is likely you saw Huffman trees in a previous course. In this problem, you will prove the
code yielded from a Huffman tree is optimal over all binary tree encodings. Recall the algorithm
for computing a Huffman tree: we first initialize the subtree set S = {c|c ∈ Σ} (so at the outset, S
is just a collection of unconnected vertices, one vertex for each character in Σ). We incrementally
build Huffman tree TH by repeatedly merging subtrees in the following way:

1. Let T and T ′ be the two subtrees in S with the lowest total frequencies (where the total
frequency of a subtree T is

∑
c∈T pc, i.e., the summed frequencies of the characters at the

leaves of T).

2. Remove T and T ′ from S.

3. Create a subtree T ′ ∪ T by making the T and T ′ the left and right subtrees of a newly created
root r.

November 18, 2014 Page 2

ASSIGNMENT 4 COURSE: COMPSCI 330

4. Add T ∪ T ′ to S.

5. If |S| > 1, repeat from Step 1.

The result of this algorithm is a binary tree whose leaves are exactly the elements in Σ, which in turn
gives us the encoding described earlier. Show that for all binary trees T whose leaves are exactly
the elements in Σ, TH is the one which minimizes∑

c∈Σ

(pc · `c),

where `c is the depth of c in T .

Hint: Try doing the following induction: Assume after i iterations/merges, each of the currently
existing n − i subtrees T1, . . . , Tn−i (sorted by non-decreasing total frequency) are subtrees in
some optimal binary tree T . With this inductive assumption, argue that the n − i − 1 subtrees
T1 ∪ T2, . . . , Tn−i are subtrees in some optimal binary tree T ′ (noting that is may be possible for
T ′ = T).

Problem 3 (30 points)
Consider the following randomized algorithm for computing a spanning tree S for an unweighted
undirected graph G = (V,E) where |V | = n and |E| = m (so note this is not a minimum spanning
tree). Denote Ev as the set of edges that are incident on vertex v ∈ V :

1. Pick an arbitrary root r ∈ V .

2. Starting at r, begin traversing the graph randomly, i.e., when sitting a given vertex v pick an
edge e = (v, u) from Ev uniformly at random and then travel along e to u.

3. Whenever we travel along an edge e and reach a vertex we have not yet seen, add e to our
spanning tree S.

We continue this random traversal until we observe every vertex. Let pe be the probability that
edge e is added to S during the random process. The following questions ask you to analyze this
algorithm.

(a) (5 points) Prove that the edges in S at the end of the algorithm in fact form a spanning tree.

(b) (10 points) Argue that
∑

e∈E pe = n− 1.

(c) (15 points) For an edge e = (u, v), define de = min(deg(u), deg(v)) (recall that deg(v) =

|Ev| is the degree of a vertex v). Prove that
∑

e∈E(pe · de) ≤ 2m.

(Hint: in your analysis for parts b and c, consider using pe(u): the probability edge e = (u, v) is
added to the spanning tree as the result of traversing edge e from u to v during the random walk).

November 18, 2014 Page 3

ASSIGNMENT 4 COURSE: COMPSCI 330

Problem 4 (30 points)
Let G = (V,E) be a unit-capacity graph with n vertices and m edges. In this question, we will
revisit the randomized edge contraction algorithm for the global min-cut problem we saw in class.
In this setting, the contraction algorithm will do one additional contraction so that the final graph is
just a single vertex (instead of being left with two vertices which define a cut).

(a) (5 points) Show that in any run of the edge contraction algorithm, the edges contracted form
a spanning tree of G.

(b) (15 points) Let T denote all the spanning trees in G. If we run the contraction algorithm,
we will get a random spanning tree in T formed by the contracted edges, and we denote this
distribution of spanning trees by D1. On the other hand, if we assign a random weight in
(0, 1) to each edge and compute a minimum spanning tree using Kruskal’s algorithm, then
we obtain another distribution D2 over T . Show that these two distributions are identical.

(c) (5 points) Using the analysis we saw in class for the contraction algorithm, argue that there
are O(n2) global min-cuts in any graph.

(d) (5 points) Observe that part (c) implies nothing about the number of s-t min-cuts there can
be for two vertices s, t ∈ V . Give an example of a graph where there are ω(n2) s-t min-cuts
for a particular pair of vertices s and t. Recall that a function g(n) = ω(n2) if g(n) is strictly
greater than n2 asymptotically , i.e., g(n) = Ω(n2) but g(n) 6= Θ(n2) (so functions like n3,
n10, 2n, etc.).

Note that this counterexample needs to be constructed based on a general parameter n since
we are attempting to show an asymptotic lower bound. This means you should describe a
graph with n vertices, define the edge set, and then argue why there are ω(n2) min-cuts.
Diagramming your example might be difficult. Likely, the easiest way to give your answer is
to just describe the structure of your graph in words (although, if you think you can provide a
clear diagram, feel free to do so).

November 18, 2014 Page 4

