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1 Overview

Previously we discussed the relationship between min and cut max flow, and introduced augmenting paths
as a strategy to compute max flow. In this lecture we discuss applications of maximum flow, specifically
for Bipartite Matching and Course selections. We show that maximum cardinality bipartite matching (”cen-
tralized dating”), and course selections to maximize ”profit” given prerequisite course constraints, can be
formulated and solved efficiently as max flow problems.

2 Bipartite Matching

Problem Statement

Suppose to maximize happiness Duke has centralized dating, where each boy selects girls he would po-
tentially date, and each girl selects boys she would potentially date. The goal for Duke is to assign the
maximum size pairing.
We can model this problem with bipartite matching: Let G = (V1 ∪V2,E) be a bipartite graph, where
V1 ∩V2 = /0 and E = {(u,v) ∈ E | u ∈ V1,v ∈ V2} (say the boys are V1, girls are V2). Note that there
are no edges between any two elements in V1, and similarly for V2. A matching is a subset of edges
M ⊆ E s.t. {(u,v1),(u,v2)} ∈ E ′ =⇒ (v1 = v2) and {(u1,v),(u2,v)} ∈ E ′ =⇒ (u1 = u2). (one boy is only
paired with one girl, and vice versa). A sample bipartite graph is shown below. A potential matching is col-
ored red (this is actually a maximum matching). In this problem we wish to find the maximum cardinality
matching (the most number of girls/boys are happy).

First Attempt (Incorrect)

Add a source node s and sink node t, and add edge (s,u)∀u ∈V1, and (v, t)∀v ∈V2. All capacities are set to
1. We will call this modified graph by the same name G = (V1,V2,E) for simplicity and a matching M ∈ E.
We let unit flow extend from s to the vertices in V1 included in the matching, and unit flow extend from all
vertices in V2 included in the matching to t.

# 12-1



Claim 1. Any matching M ∈ E containing k edges gives a flow of value k from s to t.

Proof. We show that both capacity constraints and flow balance are satisfied. Capacity constraints are
satisfied because flow is either 0 or 1 along any edge, and flow is set to 1 on every edge in the matching.
Flow balance is satisfied because a vertex is not used more than once in the matching. For any vertex u
and v, if (u,v) ∈ M, then fus = fuv = fvt = 1, where fxy denotes the flow along edge (x,y). Similarly, if
(u,v) 6∈M, then fus = fuv = fvt = 0. Thus flow in equals flow out for all vertices in V \{s, t}.

Corollary 1. If there exists a maximum cardinality bipartite matching M of size k in G (ignoring s, t), then
there exists a maximum s− t flow of size at least k in G.

Proof. Let M be a maximum cardinality bipartite matching of size k. Then from Claim 1, there exists a flow
of size k. This might not be the max flow, so the maximum s− t flow must be at least k.

This looks like a promising start to finding the maximum matching. Unfortunately, it’s wrong. See the
pathological example below. The maximum matching is 2, with corresponding flows in red. The maximum
flow however is 3, with the two maximum matches and an additional flow in green.

Second Attempt (Correct)

We were close in our first attempt. The reason the example above didn’t work was that the edges were
undirected, so we could go back from V2 to V1 without violating any flow constraints. An obvious option is
to enforce directed edges. See the modified diagram below:

We need to prove that this modification is correct, and actually computes the maximum matching through
maximum flow. First, note that Claim 1 still holds, because we haven’t changed anything with the capacities
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or which edges are chosen to have non-zero flow. To show that max matching equals max flow, we already
showed in Corollary 1 that max matching≤max flow. Now we just need to show that max matching≥max
flow.

Claim 2. If there exists a maximum s−t flow of size k in G, then there exists a maximum cardinality bipartite
matching in G (ignoring s, t) of size at least k.

Proof. Let cut(S, S̄) be a cut of G, where S =V1 +{s} and S̄ =V2 +{t}. Let δ (S) be the directed cut edges
(u,v), where u ∈ S,v ∈ S̄. First, note that by construction, δ (S) can only have edges from S to S̄, and not the
other way around. We showed in the previous lecture that indeed the ∑e∈δ (S) fe = f , where f is the max flow.
Using flow balance, we can show that we find a matching of the same value. Observe that in S̄, we can’t
have flow into any vertex v ∈V2 to be greater than 1 because flow out of v has capacity 1 (to t). Similarly, in
S, we can’t have flow out of any vertex u ∈V1 to be greater than 1 because flow into u has capacity 1 (from
s). Thus, the only case is where an edge carries unit flow from a set of matching edges.

Since we don’t know that the maximum matching, we can only say that there exists a maximum matching
at least size k. However, Corollary 1 proved the other direction of the inequality. Thus the maximum
matching equals the maximum flow.

3 Course Selection

Problem Statement

We have a set of courses, each with a ”gain” and ”pain” value. We also have a set of prerequisites for each
course. We wish to find the best set of courses that maximizes the difference between gain and pain. More
formally, let C = {c1,c2, . . . ,cn} be our set of courses. Let αi ∈ R+ be the gain of course ci, and βi ∈ R+ be
the pain of course ci. We define the profit pi of course ci to be pi = αi−βi, or the gain minus the pain. Each
course ci has set of prerequisites Ri ⊆C. Our goal is to choose C′ ⊆C s.t.∀ci ∈C′,Ri ⊆C′ and max∑ci∈C′ pi.

Solution

Split the courses into ones taken and not taken. Create a source node s and destination node t. For each class
ci where pi > 0, create an edge (s,ci) with capacity pi. For each class c j where p j < 0, create an edge (c j, t)
with capacity −p j. If c j is a prerequisite for ci, add a edge from ci to c j of capacity ∞. See an example
graph below:

First, note that the min cut of this graph satisfies the prerequisite property, because the min cut can’t be
infinite weight. We need to show that profit is maximized using this method through an argument with min
cuts.
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Claim 3. The algorithm is correct (i.e. we maximize the course profit subject to prerequisite constraints).

Proof. We wish to minimize the cut shown above. Note that the only two types of edges are shown. No ∞

edges are cut edges, or it wouldn’t be the minimum cut. The value of the cut v(S, S̄) is:

v(S, S̄) = ∑
ci∈S̄:pi>0

pi− ∑
ci∈S:pi<0

pi

= ∑
ci∈C:pi>0

pi− ∑
ci∈S:pi<0pi

pi− ∑
ci∈S:pi<0

pi

= ∑
ci∈C:pi>0

pi− ∑
ci∈S

pi

Note that the term ∑ci∈C:pi>0 pi is fixed, because this is the sum over all courses with positive profit. Thus,
we are minimizing −∑ci∈S pi, which is equivalent to maximizing ∑ci∈S pi. The result is exactly what we
specified earlier in the problem statement. Thus the min cut is the correct solution.

4 Summary

In this lecture we discussed two applications of maximum flows. The first was bipartite matching, for which
we wish to find the maximum cardinality bipartite matching in a bipartite graph. The second application
was finding the set of courses to take that maximizes a ”profit” value given prerequisite constraints. In both
cases, we were able to formulate our problem as a maximum flow/minimum cut problem, and prove that our
algorithm is correct.
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