
COMPSCI 330: Design and Analysis of Algorithms 10/21/2014 and 10/23/2014

Lecture #15 and #16
Lecturer: Debmalya Panigrahi Scribe: Nat Kell and Ang Li

1 Introduction

In this lecture, we will cover amortized analysis, which is a method where we consider the average work
done over an entire sequence of operations instead of just considering the worst-case cost/time for a single
operation; by doing such an analysis, we can obtain tighter bounds in scenarios when expensive operations
occur rarely enough that we can charge their cost to more frequent inexpensive operations. We cover such
charging arguments as well as the potential method, which is another powerful tool for doing amortized
analysis. We will apply both these techniques to binary counting, the union-find data structure (which is
needed to implement Kruskal’s algorithm efficiently), and dynamic arrays.

2 Binary Counting

2.1 Amortized Analysis

Suppose we wanted to increment a variable x starting at 0 until we reach some value n, where we represent x
as a binary number with blognc+1 bits (we’ll denote this binary representation as BIN(x)). Using the basic
carry addition algorithm (that we all know so well from primary school), we implement each x++ as follows.
Starting at the least significant bit (LSB), if we observe a 1 we flip it to 0 and then move to the next bit to the
left. Otherwise if we observe a 0, we flip it to a 1 and stop (for instance, if we add 1 to 1010011010111111,
we obtain 1010011011000000, where the digits in italics are the bits that get flipped).

Over all n increments, we can ask the question: how many bit flips do we do in total? Clearly, the
number of flips for a single increment is O(logn) since there are only blognc+ 1 bits, and since we do n
increments in total, a rough upper bound on the total flips is O(n logn). However, it seems like we should be
able to tighten this aggregate bound since on many increments we are only flipping a few bits; ideally, we
would like to show a bound of O(n), which would establish that, even if the worst-case bound of a single
increment is Θ(logn), on average we are only doing a constant amount of work for each operation.

We can indeed obtain an O(n) bound with the following “direct analysis.” Observe that the kth LSB (i.e.,
0th least significant bit is the right most bit) can be flipped from 1 to 0 and back to 1 at most n/2k times.
When this event happen, the counter has increased by 2k, and since our final total is n, it follows that these
two flips can occur at most n/2k times. Summing over all bit positions k and using the closed form for an
infinity geometric series we obtain:

Total bit flips =
blognc+1

∑
k=0

n
2k < n ·

∞

∑
k=0

1
2k = 2n = O(n).

2.2 Charging Arguments

This analysis is similar to arguments we have seen previously this semester: For each possible index for a
bit flip, we argued an upper bound on the number of times this type of flip/event can happen and summed

#15 and #16-1

these upper bounds over all possible positions to obtain the desired upper bound for the total number of
flips. Now, we are going to perturb this analysis somewhat and instead frame it as a charging argument. The
idea is that instead of analyzing each operation directly, we distribute or charge the work done on expensive
operations onto inexpensive operation and then sum over all the work done over all operations with this new
work distribution.

To make this more concrete, consider the following charging scheme for binary counting. First observe
that:

1. On a given increment, there is exactly one 0-1 flip (the last flip we perform); therefore, there are
exactly n 0-1 flips in total.

2. Each 1-0 is proceeded by a unique 0-1 flip.

Therefore, we charge every 1-0 flip the preceding 0-1 flip. By Observation 2, a given 0-1 flip is charged
exactly once; thus now, we have distributed the work so that 1-0 flips cost nothing and 0-1 flips cost 2—one
unit of work for doing the actual flip and then another unit of work from the charge the proceeding 1-0 flip
is now placing on this operation. Even though we have made 0-1 flips more expensive, we have only done
so by a constant amount. By Observation 1, there are only n 0-1 flips in total, and therefore using this new
work distribution we conclude that the number of flips is at most 2n = O(n).

2.3 Potential Functions

Another method for doing amortized analysis is using what are called potential functions. Broadly defined,
a potential function Φ(i) maps the state of an algorithm or data structure after the ith operation to a carefully
defined non-negative value. The naming convention of calling Φ(i) a “potential” comes from the fact that the
change in Φ(i) is somewhat analogous to the state system accumulating potential energy and then releasing
it later as kinetic energy. On an inexpensive operation i, ∆Φ = Φ(i)−Φ(i− 1) will likely be positive and
thus we build potential energy in the system. Then on expensive operations, we release potential energy as
kinetic energy by making ∆Φ negative, which will counterbalance the higher cost. Another analogy that is
often used is that the potential function is a bank account where we save money on inexpensive operations
and spend the money we have saved on expensive operations.

More specifically, let ci be the cost of operation i (so in the case of the binary counter, this is the number
of bits flipped on the ith increment). Given a potential function Φ, we define the amortized cost ĉi of
operation i to be ci+Φ(i)−Φ(i−1). Observe that we have the following bound if we perform n operations:

Total amortized cost =
n

∑
i=1

ĉi =
n

∑
i=1

(ci +Φ(i)−Φ(i−1)) =
n

∑
i=1

(ci)+Φ(n)−Φ(0). (1)

The last equality follows since all the Φ(i) terms in the summation telescope except for Φ(0) and Φ(n) (i.e.,
for each j = 1, . . . ,n− 1, the positive term Φ(i) when i = j will cancel with the negative term −Φ(i− 1)
when i = j + 1). Therefore, as long as Φ(0) and Φ(n) are non-negative, then amortized cost is an upper
bound on actual cost (since actual cost is just ∑

n
i=1 ci).

As we mentioned for our binary counter example, ci is just the number of bit flips on the ith increment.
To define our amortized cost, we will use the following potential function:

Φ(i) = The number of 1s in BIN(x) after i increments. (2)

To do our analysis, consider the difference between the number of 1s in x before and after the ith
increment; namely, we will define Φ(i) in terms of Φ(i− 1). Observe that based on the algorithm, there

#15 and #16-2

are ci−1 1s that become 0s on the ith increment: the first ci−1 are 1s being flipped to 0, and then the last
unit of cost is added from flipping the last 0 to a 1. Since this last flip also adds an extra 1 to x, the total
number of 1s after the ith increment is Φ(i) = Φ(i−1)− (ci−1)+1. Therefore, the total amortized cost is
as follows:

n

∑
i=1

ĉi =
n

∑
i=1

(ci +Φ(i)−Φ(i−1))

≤
n

∑
i=1

(ci +(Φ(i−1)− ci−1)+1−Φ(i−1)) (since Φ(i) = Φ(i−1)− (ci−1)+1)

=
n

∑
i=1

2 = 2n.

Clearly, both Φ(0) and Φ(n) are non-negative (we cannot have a negative number 1s in BIN(x)); there-
fore by (1), 2n = O(n) is an upper bound on the total actual cost, as desired.

To get some intuition as to how the potential function is working, observe that whenever we only flip
the first bit (i.e., we are incrementing an even number to an odd number), the amortized cost is 2 instead of
just 1—these are the operations where we save potential. For any increment where we flip three or more
bits, there is a drop in potential where we spend the money we saved from each of the odd increments. Note
that such operations can charge the potential much more than just a cost of 1 (it can be as high as log(n));
however, since we are saving potential on half of the increments, we always have enough money in the
potential’s bank account to lower the cost of every operation down to just 2.

3 Revisiting Kruskal’s Algorithm: Union-Find Data Structure

3.1 Storing Components for Kruskal’s Algorithm

For a weighted graph G = (V,E) where we denotes the weight of edge e ∈ E, recall Kruskal’s algorithm for
computing a minimum spanning tree (MST) of G (if you are having trouble remembering the MST problem
or Kruskal’s algorithm, you should go back and review the notes for Lecture 8). At a high level, we begin
Kruskal’s algorithm by initializing each vertex to be in its own component. Then in order of increasing edge
weight, we repeatedly add edges to the tree if they merge two of the current components together (i.e., if
e = (u,v) is the edge we are considering, we add edge e to our tree if u is currently in a different component
than v). Once all vertices lie in the same component, we argued that the resulting structure does in fact give
us a MST.

However, when we previously outlined the pseudo-code for Kruskal’s, we glossed over how to represent
these collections of vertex sets in memory. On the iteration where we consider adding edge e = (u,v), we
need to quickly find out if u and v belong to the same component, and if they do not, we need to merge these
components together.

To perform such queries and operations, we will implement a union-find data structure. A union-find
data structure D is defined over a set of n elements U = {x1, . . .xn} and maintains a collection of disjoint
subsets S1, . . .Sh to which these elements belong, where 1≤ h≤ n. As in our scenario above, every element
is in its own subset when D is initialized. D then supports the following two operations:

• FIND(x): return Si such that x ∈ Si (in an actual implementation, we would likely just return the
representative element for set Si).

#15 and #16-3

• UNION(Si,S j): Replace Si and S j with Si∪S j in the set system.

So for Kruskal’s algorithm, we initialize a union-find data structure over the vertices. For each edge
e = (u,v), if FIND(u) 6=FIND(v), then we call UNION(FIND(u), FIND(v)) to merge u and v’s components
(otherwise, we move on to the next edge). In total we will issue at most 2m FIND queries and always
perform n UNION operations.

3.2 Implementing Union-Find

We now turn to the details of implementing FIND(x) and UNION(Si,S j) efficiently. Our first implementa-
tion decision is to how to represent the “labels” for each set. Here, we will use elements as representatives:
At any given time, there will be a unique x ∈ Si which we will return as the label of Si whenever we call
FIND(y) for any y ∈ Si (in the following implementations, we will make it clear how each representative is
determined/maintained).

3.2.1 Union-Find with Linked Lists

The most obvious way to represent the set system is to just use a collection of linked lists. For each set Si,
we have a corresponding linked list Li which contains the elements in Si. The representative of Li will just
be element at the head of the list, which is then preceded by the the rest elements in Si through a sequence
of pointers. To execute FIND(x), we start at x and follow the path of pointers leading to the head and then
return it as the label of the set. Note that since there can be Ω(n) elements in a set, we might have to traverse
Ω(n) links to reach a set’s label; therefore when using linked list, FIND(x) runs in Θ(n) time in the worst
case. UNION operations, however, are quite simple. To implement UNION(Si,S j), we just make the head of
Li point to the tail of L j (or vice versa). Since we can store head/tail metadata along with the head of a list,
UNION is an O(1) time operation.

As noted above, a given run of Kruskal’s may do 2m FIND(e) queries, which gives us a Θ(mn) time
algorithm in the worst case. When we first presented Kruskal’s algorithm, we claimed a running time of
O(m logn); therefore, using this linked list implementation will not suffice.

3.2.2 Union-Find with Trees

If we want to maintain the property that UNION operations still take O(1) time, a natural improvement to
this linked list scheme is to instead maintain a set of trees. Now, a set Si corresponds to a tree Ti, where the
representative of the set is at the root. To implement UNION(Si,S j), we make Ti a subtree of Tj by making
the root of Tj the parent of the root of Ti. Note that this implies that each tree is not necessarily binary since
a fixed root r can participate in several UNION operations (it is possible that each UNION results in another
subtree rooted at r).

FIND(x) still works in the exact same way—we simply start at x and follow a path up the corresponding
tree via parent pointers until we reach the root. Our hope is that if each tree structure remains balanced,
then we can bound the longest path from node to root when doing a FIND query. However, our current

#15 and #16-4

specifications do not ensure balance. For example, consider the sequence of n unions

{x1}∪{x2}
{x3}∪{x1,x2}
{x4}∪{x1,x2,x3}

...

{xn}∪{x1, . . . ,xn−1}.

Informally, we grow one particular set in the set system, and then with each UNION we add one of the
remaining singleton sets to this growing set. When we perform UNION(Si,S j) in this scheme, note that we
are arbitrarily picking which root (the root of Ti or the root Tj) becomes the new root when we combine Ti

and Tj. Thus in the above example, it is possible that when we merge S = {xi} with S′ = {x1, . . . ,xi−1},
we use xi as the new root each time. If we are unfortunate enough to have this sequence of events happen
for each union, then the resulting tree structure will just be an n element linked list (and therefore it is still
possible for FIND(x) to take Ω(n) time).

A straight forward way to fix this pitfall is to do what is called union-by-depth. For each tree Ti, we
keep track of its depth di, or the longest path from the root to any node in the tree. Now when we perform
a UNION, we check to see which tree has the larger depth and then use the root of this tree as the new
root. Note that this extra information can be easily stored and updated with the root of each tree: If we call
UNION(Si,S j) and di ≤ d j, then the root of Tj becomes to root of Ti∪Tj, and we update the depth of Ti∪Tj

to be max(d j,di+1) (note this max is only necessary in the case where di = d j—otherwise, the depth of the
combined tree is no larger than depth of Tj).

What does “union-by-depth” buy us? The following theorem establishes that this feature does indeed
balance the trees in the set system.

Theorem 1. For a tree implementation of the union-find data structure that uses union-by-depth, any tree
T (representing set Si in the set system) with depth d contains at least 2d elements.

Proof. We do a proof by induction on the tree depth d. Since a tree T with depth 0 has has 20 = 1 elements,
the base case is trivial. For the inductive step, assume that the hypothesis holds for all trees with depth k−1,
i.e., any tree with depth k−1 contains at least 2k−1 nodes. Observe that in order to build a tree T with depth
k, we must merge together two trees Ti and Tj that both have depth k−1; otherwise, we would either have:

1. Both Ti and Tj have depth strictly less than k−1. Since the depth of Ti∪Tj can be no more max(d j,di)+
1, the combined tree Ti ∪Tj can have depth at most k− 1 (note this is true regardless of whether we
use union-by-depth).

2. Exactly one tree has depth k−1; without loss of generality, suppose d j = k−1 and di < k−1. Since
we are using union-by-depth, we will make the root of Ti ∪Tj the root of Tj. Since di < k− 1, the
length of any path from this new root of to any node in Ti can be at most k− 1. Since Tj has depth
k− 1 and no node in within this subtree changes depth in Ti ∪Tj , the depth of the combined tree is
exactly k−1.

Therefore, assume di = d j = k− 1; we can then apply our inductive hypothesis to both Ti and Tj to
obtain:

|T |= |Ti∪Tj|= |Ti|+ |Tj| ≥ 2k−1 +2k−1 = 2k,

#15 and #16-5

as desired.

Theorem 1 implies that any tree with n elements can have depth at most logn (the theorem implies
n ≥ 2d where d is the depth of the largest tree/subset, implying logn ≥ d). Therefore, FIND(x) runs in
O(logn) when using union-by-depth. From Kruskal’s perspective, this gives us the desired running time.
The initial sort we do on the edge weights takes O(m logm) = O(m logn2) = O(m logn) time. We then do n
UNIONs that each take O(1) time and 2m FINDs that each take O(logn) time. Therefore, the overall running
time of Kruskal’s using this implementation is O(m logn)+O(n)+O(m logn) = O(m logn).

3.2.3 Union-Find with Stars

Although doing a tree implementation that uses union-by-depth gave us the desired asymptotic running
time of O(m logn), it is a bit unsettling that UNIONs take constant time and FINDs could take Ω(logn)
time. Since n = O(m) for any graph where we want to find a spanning tree, it seems a bit wasteful that
our implementation gives us a faster running time for the function we call fewer times (recall we perform
n UNIONs and at most 2m FINDs). Therefore in this section, we will look at an implementation where we
force each FIND to take O(1) time, but as a result make UNIONs operations more expensive (but hopefully
by not by too much).

The most naive way to achieve O(1)-time FINDs is to represent sets as star graphs. A star graph is
simply a tree with a designated a center node such that every other node in the graph is a leaf that is only
adjacent (or points) to this center node. Thus, we will maintain that each tree Ti that represents a set Si is a
star graph, where the center node of Ti is the representative of Si. Clearly with this scheme, when we call
FIND(x) we must only traverse at most 1 link to reach the representative node, and therefore the running
time of FIND(x) is O(1).

However to maintain this star graph structure, we will need to take more time when we make a UNION

call. If we have two star graphs Ti and Tj that we want to merge, we first need to pick which representative
element we will use for Ti ∪Tj (just like for our previous implementation with balanced trees). If we pick
Ti’s center ci to be the new center, we then need to iterate through every element x ∈ Tj and make x point to
ci. Since Tj could have Ω(n) elements, this operation could take Ω(n) time. Therefore if we do n UNION

operations, our running time for Kruskal’s is now Θ(n2) (which could be worse than O(m logn)).
To avoid this problem, we will use a rule that is similar to union-by-depth. Namely, we will use union-

by-size. Namely, if we are given two star graphs Tj and Ti, we will dissemble the smaller of the two sets
and make these elements point to the center of the larger set (and leave the star graph in the larger graph
untouched).

To analyze the speedup obtained from doing union-by-size, we use a charging argument to do an amor-
tized analysis over the n UNIONs performed by Kruskal’s. We use the folioing charging scheme: Any time
we merge two trees Ts and T` such that |Ts| ≤ |T`|, we will simply put a unit of charge on each element in Ts

(remember that we are taking the elements of Ts and changing their pointers to the center of T`). Note that
for all x ∈ Ts, x now belongs to a set that is twice as large. We also know that for x ∈U , the set to which x
belongs can double at most logn times (the size of final merged set is n); therefore, the charge on a given
element x can be at most logn after n unions. Since the total time needed over all n unions is equal to the
total charge distributed over the elements, the time it takes to make n UNION calls is O(n logn). Note that
even though Kruskal’s algorithm still runs in O(m logn) time since we must initially sort the edges, we have
reduced the time it takes to execute Kruskal’s merging procedure to O(n logn+m).

#15 and #16-6

3.2.4 Optimal Union-Finds: Path Compression and Union-by-Rank

We will now outline the best scheme for implementing a union-find data structure. This implementation will
be more akin to what we saw in Section 3.2.2 when we used balanced trees to represent our set system. The
main feature we will add to this implementation is what is known as path compression, which will attempt to
make our trees more “star-graph-like” whenever we make a FIND call (so in some sense, we are combining
the strategies in sections 3.2.2 and 3.2.3).

More specifically, whenever we call FIND(x) where x ∈ Si, we will follow some path P from x to the
root ri of Si. For each element y ∈ P, we now know that y belongs to set Si; therefore at this point, it makes
sense to make each of these elements point directly to ri. FIND(x) with path compression does exactly this
modification, and therefore after the procedure completes, ri and all the elements along P now form a star
graph in Ti. Note that it is not too hard to implement FIND(x) such that it returns ri, makes every element in
P point directly to ri, and runs in O(|P|) time.

To implement UNION, we essentially still use union-by-depth. We still merge components using the
same rule (we make the tree with the smaller depth a subtree of the tree with the larger depth). Note,
however, that because we might have path compressing FIND calls in-between UNION calls, we might
compress a path that defined the depth a given tree Ti. In such a case, di no longer accurately stores the
depth of di.

How does one fix this issue? The answer is that we do not. Instead, we just call this di the rank of
Ti and use it in the same way we would in our union-by-depth scheme. It turns out that using these two
features in combination gives us an extremely good bound over n UNIONs and 2m FINDs. Clearly, the n
UNION operations still take O(n) time since each UNION call takes O(1) time. Using an advanced amortized
analysis, one can show that the 2m FIND(x) queries take O(m ·α(n)) time, where α(·) is the inverse of the
Ackermann’s function1. Although α(n) is unbounded as n tends to infinity, it grows incredibly slowly. For
example, for all n ≤ 1080 (which is more than the number of atoms in the observable universe), α(n) ≤ 4.
Therefore, for all practical purposes we can treat α(n) as a constant (however we still express the running
time as O(2m ·α(n)) to be mathematically correct).

Dynamic Table is a data structure that resizes itself according to the number of elements present. As a
result, it supports arbitrarily large number of elements.

4 Dynamic Table

4.1 An Insert Operation on a Dynamic Table

The following pseudo-code describes the operation to insert the i-th element into the Dynamic Table.

Insert(i):
if there’s space, insert.
if space=i−1, (i = 2k +1)

allocate new space 2(i−1)
copy current table over

Total time:
1 In lecture, we spent some time defining Ackermann’s function and outlined some intuition for why it grows so quickly. You

will not be responsible for knowing Ackermann’s function offhand, so we will omit this discussion from these lecture note; however,
we encourage the reader to visit the Wikipedia page on the subject: http://en.wikipedia.org/wiki/Ackermann_function

#15 and #16-7

http://en.wikipedia.org/wiki/Ackermann_function

O(1) if there is space
O(i) if new space allocation is required
Hence, total time to insert n elements = 1+2+4+ ...+n = O(n2)

4.2 Charging Scheme Analysis

1. If each element charged 1 when it is copied,
worst-case charge on an element = O(logn).
Total charge = O(n logn)

2. If each element in the second half of the current table is charged 2,
each element is charged at most once.
Total charge ≤ 2n = O(n)

4.3 Potential Function Analysis

Potential function to use: φ = 2∗ (# o f elements)− size o f table
1. φ0 = 0
2. φi ≥ 0
Ai = ci +φi−φi−1
When there’s no copying: Ai = 1+2 = 3
When there’s copying: Ai = 1+ i+2− (i−1) = 4
Hence, 4n≥ ∑i Ai = ∑i ci +φn (at least 0)−φ0 (equals 0) ≥ ∑

n
i ci

4.4 If deletion is allowed

We can double the size of the array when the array is full, and half the size of the array when the array is
less than one quarter full. An amortized O(1) time for insert or delete operation is achieved this way.

#15 and #16-8

	Introduction
	Binary Counting
	Amortized Analysis
	Charging Arguments
	Potential Functions

	Revisiting Kruskal's Algorithm: Union-Find Data Structure
	Storing Components for Kruskal's Algorithm
	Implementing Union-Find
	Union-Find with Linked Lists
	Union-Find with Trees
	Union-Find with Stars
	Optimal Union-Finds: Path Compression and Union-by-Rank

	Dynamic Table
	An Insert Operation on a Dynamic Table
	Charging Scheme Analysis
	Potential Function Analysis
	If deletion is allowed

