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1 Overview

We introduce the topic of randomized algorithms, beginning with two examples: the coupon collector
problem and shared resource contention. Along the way, we show techniques in the analysis of randomized
algorithms, through linearity of expectation, independence, and useful mathematical facts. Our main goal
for this class will be bounding the runtime of randomized algorithms for both problems, in expectation.

2 Introduction

Pros and Cons of Randomized Algorithms

Pros: Simplifies algorithm substantially. Also, for some problems, the best algorithms are randomized; we
either don’t know any complementary deterministic algorithm, or that a randomized algorithm is provably
better than its deterministic complement.
Cons: Randomized doesn’t seem to help much with improving complexity.

Two types of Randomized Algorithms

Monte Carlo Algorithm: Randomized algorithm that gives the correct answer with probability 1− o(1)
(”high probability”), but the runtime bounds hold deterministically.
Las Vegas Algorithm: Randomized algorithm that always gives the correct answer, but the runtime bounds
hold in expectation.

3 Coupon Collector Problem

Problem Statement

There are n coupons. In each draw, a coupon is drawn uniformly at random (uar). How many coupons do I
need to draw to get all n coupons (in expectation)?

Solution

Let Xi be the random variable representing number of draws between the (i− 1)th distinct coupon and the
ith distinct coupon.

Definition 1. Let X be a random variable reflecting the number of independent Bernoulli trials (with prob-
ability p of success) needed to observe the first success. Then the probability that the first success occurs at
the kth trial follows a Geometric distribution with

Pr(X = k) = p(1− p)k−1
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Let pi be the probability of drawing an unseen coupon at the i-th draw. Then

pi =
n− i+1

n

Let qi be the probability of drawing a seen coupon. Then

qi =
i−1

n

Thus the probability of taking k draws to get the ith unseen coupon is as follows, which follows from
independence between draws.

Pr(Xi = k) = pi qk−1
i

Thus Xi is a geometric random variable.
Let X be the number of coupons drawn until all n distinct coupons show up, which is what we want to find.
First, note that X = ∑

n
i=1 Xi. By linearity of expectation, it follows that E[X ] = ∑

n
i=1E[Xi].

Our next step is to find the expectation of Xi.

E[Xi] =
∞

∑
k=1

k Pr[Xi = k]

=
∞

∑
k=1

k qk−1
i pi

=
1
pi

=
n

n− i+1

From this we can find the expected number of coupons drawn until all n distinct coupons show up, which
is simply the sum of all E[Xi], for all i = 1, . . . ,n.

E[X ] =
n

∑
i=1

E[Xi]

=
n

∑
i=1

n
n− i+1

= n
(

1
n
+

1
n−1

+ . . .+
1
2
+

1
1

)
= Θ(n logn)

Note that the partial sum of the harmonic series has logarithmic growth.

4 Shared Resource Contention

Problem Statement

We have n processes p1, . . . , pn, all trying to access a shared resource S. Each process tosses a random coin
with success probability 1/n. If the coin returns true for process pi, then pi tries to access the resource.
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If there is no contention with other processes (pi is only process that tries to access the resource), then pi

accesses the resource. If there is contention, then no process accesses the resource. Our goal is to determine
how many rounds are required for all processes to access the resource (in expectation).

Solution

Let Xi be the number of rounds between the (i−1)th and ith process accessing S. Let X be the total number
of rounds needed, and we wish to find E[X ].
Again, note that Pr(Xi = k) = qk−1

i pi and so E[Xi] =
1
p . Here we will leverage the useful fact that

Fact 1.
lim
x→∞

(
1− 1

n

)n

=
1
e
= Θ(1)

In addition,

lim
x→∞

(
1− 1

n

)n−1

=
1
e
= Θ(1)

Let pi be the probability that a new process access the resource in any round, and let its complement be
qi = 1− pi. Then

pi = (n− i+1)
1
n

(
1− 1

n

)n−1

=
n− i+1

n
Θ(1)

Note that 1
n

(
1− 1

n

)n−1 is the probability that the i-th process returns true with the rest being false, and
(n− i+1) is the number of possible processes. The second step substitutes Θ(1) based on Fact 1. Then

E[Xi] =
1
pi

=
n

n− i+1
Θ(1)

= Θ(logn)

Again, similar to the coupon collector problem, E[X ] = Θ(n logn) by linearity of expectation.

5 Summary

In this lecture we introduced Randomized Algorithms, with a brief overview of two classes of randomized
algorithms: Monte Carlo and Las Vegas Algorithms. We then discussed two applications of Las Vegas
algorithms: the Coupon Collector Problem and the Shared Resource Contention Problem. We used basic
probability and useful facts from mathematics to prove the number of iterations it takes for the algorithm to
complete, in expectation.
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