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1 Overview

In this lecture, we discuss linear programming. We first show that the various forms of linear programs are
all equivalent. We give an example showing how to express a problem as a linear program. We discuss
separation oracles and duality.

2 Forms of Linear Programs

In this section, we define common linear program forms, and show that these are equivalent.

Definition 1. A linear program is in standard form if it has the following structure.

maximize cTx
subject to Ax≤ b

x≥−→0

We use bold lowercase letters to denote vectors, and bold uppercase letters to denote matrices.

Definition 2. A linear program is in general form if it has the following structure.

minimize/maximize cTx
subject to A1x≤ b1

A2x = b2

A3x≥ b3

x1 ≥
−→
0

x2 =
−→
0

x3 ≤
−→
0

Definition 3. A linear program is in slack form if it has the following structure.

maximize cTx
subject to Ax = b

x≥−→0
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Claim 1. Standard form, general form, and slack form LPs are all equivalent.

We prove Claim 1 with a series of lemmas which show that every form can be converted into every
other form. First, observe that programs in standard form or slack form are already in general form, so this
direction is done.

Lemma 1. A linear program in general form can be transformed into standard form.

Proof. We transform minimization LPs to maximization by negating the objective:

minimize cTx −→ maximize − cTx. (1)

We also transform “≥” constraints to “≤” constraints using negation:

A3x≥ b3 −→ −A3x≤−b3. (2)

We transform equality constraints to inequality constraints by writing two inequalities:

A2x = b2 −→ A2x≥ b2, and

A2x≤ b2.
(3)

From these inequalities, we use transformation 2 to transform the remaining constraints to “≤” constraints.
We transform the variable equality constraints to inequality constraints:

x2 = 0 −→ x2 ≥ 0, and

x2 ≤ 0.
(4)

Finally, x3 ≤ 0 constraints are of the form Ax≤ b, and are therefore allowed (the corresponding entries in b
will be 0, and the entries in A will be 1).

Lemma 2. A linear program in standard form can be transformed into slack form.

Before we give the proof, note that Lemma 1 and Lemma 2 complete the proof of Claim 1. We can
convert from general to slack form by composing Lemma 1 with Lemma 2. Now, we give a proof of
Lemma 2

Proof. Constraints in standard form have structure

Ax≤ b.

We introduce variables s, and transform the above constraints as follows:

Ax≤ b −→ Ax+ s = b, and

s≥ 0.
(5)

A solution x to initial LP is feasible if and only if there exist a setting of variables s, along with the setting
of x, such that the transformed LP is feasible.
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3 Minimum s-t Cut as an LP

We first review the definition of the minimum s-t cut problem. Let G = (V,E) be a graph, and let s, t ∈ V .
Let edge e have capacity ue. Our goal is to find a cut (S, S̄) such that

∑
e∈(S,S̄)

ue

is minimized, and s ∈ S and t ∈ S̄. We formulate this problem as an integer program:

minimize ∑
e∈E

uexe

subject to ∑
e∈P

xe ≥ 1 ∀paths P from s to t

xe ∈ {0,1} ∀e ∈ E

This is an integer program since values of xe must be integral. We relax our formulation to an LP.

minimize ∑
e∈E

uexe

subject to ∑
e∈P

xe ≥ 1 ∀paths P from s to t

xe ≥ 0 ∀e ∈ E

We call this the fractional minimum s-t cut problem. Can we solve this LP? There is a problem: the number
of constraints of the LP is the number of paths from s to t, which could be exponential. In the following
section, we show how it is sometimes possible to solve LPs with exponential constraints.

4 Separation Oracles

Definition 4. A separation oracle is a polynomial algorithm, which given an (possibly exponential sized)
LP and a solution vector (i.e. a setting of the variables) x outputs

1. YES if x is feasible for the LP (i.e. x satisfies all the constraints), or

2. a violated constraint otherwise.

Theorem 3. Any LP with a separation oracle can be solved in polynomial time.

We won’t give a proof of Theorem 3

Example . Consider the following LP.

maximize x

subject to x+ y≤ 10

y≥ 5

Given solution vector (5,6), a separation oracle would output constraint x+y≤ 10, since (5,6) violates this
constraint.
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Note that separation oracles are trivial for polynomial sized LPs. In this case, the oracle can check every
constraint in the LP to see if each is satisfied. If the LP has exponentially many constraints, the oracle cannot
check every constraint.

Example . Is there a separation oracle for fractional minimum s-t cut? That is, given G = (V,E) and given
xe for all e, is there a path P from s to t such that

∑
e∈P

xe < 1?

Our constraints are violated if and only if such a path exists. However, finding whether such a path exists
is just the shortest path problem! As we have seen, the shortest path problem can be solved in polynomial
time. Therefore, this is a separation oracle for fractional minimum s-t cut, and so by Theorem 3 the LP is
solvable in polynomial time.

5 LP Duality

In this section, we give a motivating example for LP duality. We will discuss duality more formally in the
next lecture. Consider the following LP.

minimize 10x+10y

subject to x+3y≥ 4

2x+ y≥ 5

x≥ 0

y≥ 0

It is not immediately clear what the solution to this LP is. Instead of trying to find the optimal solution, we
try to find a lower bound on the optimal. We multiply each of the first two constraints by some number, and
add them.

a · (x+3y≥ 4)

+ b · (2x+ y≥ 5)
(6)

If we set a = 2 and b = 3, we get

2x+6y≥ 8

+ 6x+3y≥ 15

8x+9y≥ 23.

This is significant because the objective is larger than the left side of this constraint. That is,

10x+10y≥ 8x+9y≥ 23.

Therefore, the optimal value of the objective, 10x+ 10y, is at least 23. However, which numbers a and b
should we choose to get the best lower bound? Keeping a and b in Equation 6 gives

ax +3ay ≥ 4a

+ 2bx +by ≥ 5b

(a+2b)x +(3a+b)y ≥ 4a+5b.
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We want to maximize the right side of this constraint, 4a+ 5b to get the highest lower bound possible.
Additionally, the left side of the constraint should not be more than the objective. We can write this as
follows.

maximize 4a+5b

subject to a+2b≤ 10

3a+b≤ 10

a≥ 0

b≥ 0

This is just another LP! We call this LP the dual, and the original LP the primal. The dual LP has one
constraint for each variable in the primal, and one variable for each constraint in the primal. A principle
called weak duality which we will discuss more formally in the next lecture, says that the maximum dual LP
objective is at most the minimum primal LP objective. In fact, strong duality says that these two quantities
are always equal.
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