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Lecture #22
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1 Overview

In this lecture we reviewed the general definition of linear programming, as well as the properties of primal
and dual linear programs. We then introduced two linear programming duality theorems, and analysed their
application on Maximum Flow.

2 Review of Linear Programming

2.1 Primal and Dual Linear Program

Definition 1. A primal linear program is in the form of,

maximize cTx
subject to Ax≤ b

x≥−→0

Definition 2. The corresponding dual linear program is in the form of,

minimize bTy

subject to ATy≥ c

y≥−→0

2.2 Dual of Dual Linear Program

Imagine that we have the following primal linear program:

maximize x+y
subject to a(x+2y≤ 4)

b(2x+y≤ 8)

x≥−→0

y≥−→0
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To find out the a and b that maximise the result we compute the corresponding dual linear program:

minimize 4a+8b
subject to a+2b≥ 1

2a+b≥ 1

a≥−→0

b≥−→0

To compute the dual of dual linear program we have:

minimize 4a+8b
subject to c(a+2b≥ 1)

d(2a+b≥ 1)

a≥−→0

b≥−→0

Which gives:

maximize c+d
subject to c+2d≤ 4

2c+d≤ 8

c≥−→0

d≥−→0

Thus, we know that,

Definition 3. The dual of dual linear program is exactly the primal linear program.

3 Value of Linear Programs

3.1 Weak Linear Program Duality Theorem

Theorem 1. Let x∗, y∗ be any feasible solutions of a primal-dual pair for,

maximize cTx
subject to Ax≤ b

x≥−→0
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minimize bTy

subject to ATy≥ c

y≥−→0

Then,

cTx∗ ≤ bTy∗

Proof.

cTx∗ = cTA−1(Ax∗) <= A−1A = 1

≤ cTA−1b <= rule from primal LP

≤ (ATy)TA−1b <= rule from dual LP

= y∗TAA−1b

= y∗Tb

= (bTy∗)T

= bTy∗ <= as b and y∗ are only scalars

Remark 1. Feasible solutions are solutions that satisfy all the constraints. The weak linear program duality
theorem shows that for all feasible solutions, the objective of the maximisation problem cannot exceed the
objective of the minimisation problem. In other words, the two objectives bound each other.

3.2 Strong Linear Program Duality Theorem

Theorem 2. If in the above case, x∗, y∗ are also optimal for the primal-dual pair, then,

cTx∗= bTy∗

(not proven in class)
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4 Application on Weak & Strong Duality Theorems - Maximum Flow

4.1 Flow Decomposition Theorem

Theorem 3. Any flow can be decomposed into at most m flow paths and flow cycles.

Remark 2. A flow path is a path carrying a flow. A flow cycle is a cycle carrying a flow.

For example, the below graph can be decomposed into a flow path of 2 and a flow cycle of 1:

Claim 4. There always exists a maximum flow where the flow decomposition has no flow cycle.

Proof. The value of the maximum flow is simply the sum of all flow paths, as for any flow cycle, whatever
flow that goes into t will go out of t, which does not add any value into the total value of the flow. Thus,
we could simply remove the cycles from a decomposition to get a new flow with the same maximum flow
value.
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4.2 Linear Programming Representation

The primal of maximum flow can be represented as:

maximize Σ fp

subject to p ∈ p(s, t) <= p(s, t) : the set of all paths from s to t

Σp:e∈p fp ≤ ue ∀e ∈ E <= capacity constraint

<= p : e ∈ p : for all paths that contain the edge

fp ≥ 0

(The flow balance is automatically satisfied, as we are looking at flow paths.)

The dual of maximum flow can be represented as:

(we denote xe as the dual variable)

minimize Σe∈Euexe <= inferred from constrains of primal

subject to Σe∈pxe ≥ 1 ∀p ∈ p(s, t)

xe ≥ 0

For example, for the below graph, we have the primal linear program:

maximize fp1 + fp2

subject to fp1 ≤ 2

fp1 ≤ 1

fp2 ≤ 3

fp2 ≤ 2

fp1 + fp2 ≤ 5 <= for e5
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To compute the dual linear program we have:

maximize fp1 + fp2

subject to xe1( fp1 ≤ 2)

xe2( fp1 ≤ 1)

xe3( fp2 ≤ 3)

xe4( fp2 ≤ 2)

xe5( fp1 + fp2 ≤ 5)

Which gives:

miminize 2xe1 + xe2 +3xe3 +2xe4 +5xe5 <= this is essentially Σe∈Euexe

subject to xe1 + xe2 + xe5 ≥ 1

xe3 + xe4 + xe5 ≥ 1 <= this is essentially Σe∈pxe ≥ 1 ∀p ∈ p(s, t)

Remark 3. The dual linear program of maximum flow is essentially fractional minimum cut problem. (it
is minimum cut if xe is either 0 or 1).

Remark 4. The primal linear program of maximum flow has exponential number of variables, as #paths
is exponential, and only polynomial number of constraints, as #constraints is essentially #edges. Thus, even
though we could not solve the primal in polynomial time, we could use the Strong Linear Program Duality
Theorem to convert the primal to the dual, solve the dual in polynomial time, and know that the solution
(the value of the maximum flow) must also be the optimal solution for the primal.

4.3 Equality of Minimum Cut and Fractional Minimum Cut

So far we’ve shown that:

maximum flow = fractional minimum cut (1)

≤minimum cut (2)

(1) Based on the strong duality theorem. Fractional mincut is the optimal solution for the dual.
(2) Minimum cut has more restriction in the values xe could take. It is always a feasible but not

necessarily an optimal solution for the dual.

From the previous lecture we’ve learnt that fractional minimum cut is in fact equal to minimum cut. Here
we prove the equality with our linear programs.
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Theorem 5. Fractional minimum cut = minimum cut.

Proof. Suppose x∗e , e ∈ E is an optimal solution for the fractional minimum cut.

Define dt as the length of the shortest path from s to t under x∗e . We know that dt ≥ 1 because of the constrain
from the dual linear program.

Suppose there is an edge from u to v. We know that dv ≤ du + x∗uv.

Define a random cut (S,S) as follows,
1. choose d ∈ [0,1] uniformly at random.
2. choose xuv = 1 i f du≤ d ≤ dv and 0 otherwise.

Claim 6. The above randomised procedure will always form a cut. (an example shown above)

Proof. We prove this claim by contradiction. Suppose the above procedure did not result in a cut. Then
there must be some path that we haven’t chosen any edge from. However, this is not possible as for any path
we have ds = 0 and dt = 1. Thus, there muse be at least one edge that crosses d.

We’ve shown that the above procedure will always form some cut, though the value is not deterministic
since the cut is based on a randomised variable d. Now we want to show that the expected value of this cut
is indeed the fractional minimum cut value that we start with.

Claim 7. E[Σe∈Euexe]≤ Σe∈Euex∗e

Proof.

E[Σe∈Euexe] = Σe∈EueE[xe] (3)

≤ Σe∈Euex∗e (4)

(4): E[xe] = Pr[xe = 1] = Pr[du ≤ d ≤ dv] = dv−du ≤ x∗uv (shown above) where e = (u,v)
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The above claim indicates that there must exist a cut (S,S) s.t.,

Σe∈(S,S)ue ≤ Σe∈Euex∗e (the fractional minimum cut)

as not all values can be greater than the expectation (Σe∈Euex∗e in this case).

We’ve shown previously that,

fractional minimum cut≤minimum cut

Thus, the fractional minimum cut must be equal to the minimum cut for both equations to be valid.
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