
COMPSCI 330: Design and Analysis of Algorithms 11/18/2014

Lecture #23
Lecturer: Debmalya Panigrahi Scribe: Nat Kell

1 Introduction

For most (if not all) of the problems we have examined this semester, we have been able to define algorithms
that solve these problems efficiently, i.e., in polynomial time (e.g., O(n) time, O(n3) time, etc.). Unfortu-
nately, problems that are known to be polynomial-time solvable are the exception and not rule—it turns out
that for most problems the arise in both practice and theory, we do not know of any polynomial time algo-
rithm that solves them. Furthermore, based on the current state of computer science research, there are no
existing methods for showing efficient algorithm cannot exist (i.e., it is still possible that there are efficient
algorithms for these problems that we have not discovered, although the general consensus/intuition of the
computer science community is that this is likely not the case).

So suppose when you join the workforce after graduating, your boss gives you a problem and asks you
to find/code an algorithm that solves it efficiently. After working for some time, you start to believe that this
problem is too hard for a computer to solve in a reasonable amount of time. It is inaccurate to report back
and claim: ”It is impossible to solve this problem efficiently!” since even the brightest computer science
researchers have been unable to show such a property. Ideally, you would like some method that would
formally allow you to state that ”I cannot solve this problem efficiently, but neither can the smartest people
in the world!”

In this lecture, we will introduce the notion of NP-hardness, which gives us a formal method for making
such a claim. At a high level, our goal will be to take a new problem and show it is at least as hard as some
problem that is already known to be hard. By doing this, we show that even though we might not have an
efficient algorithm for this new problem, such an algorithm would imply that there is an efficient algorithm
for a hard problem that even the best researchers have been unable to crack.

2 Easy versus hard problems

In this section, we will begin by defining a suite of hard problems we have not examined before during the
semester. Interestingly, many of these problems have seemingly similar variants that are easy to solve. We
will mention these variants as we go in order to highlight how a small change in a problem definition can
result in a large jump in complexity.

2.1 Satisfiability

The first hard problem we will examine is what is known as Satisfiability or SAT. As input, we are given a
set of n boolean variables X = {x1,x2, . . . ,xn} (i.e., each variable can be set to either true or false). We are
then given a boolean formula over these variables of the following form (noting that this is just a specific
example where X = {x1,x2,x3,x4}):

(x1∨ x2∨ x3)∧ (x2∨ x3∨ x4)∧ (x4∨ x1∨ x2) (1)

#23 -1

In terms of notation, ‘∨” and “∧” denote the conjunction and disjunction operations, respectively (which are
analogous to the OR and AND operations for boolean variables in a programming language). xi denotes
the negation of the boolean variable xi (analogous to !xi). We deem sequence of conjunctions within a given
set of parentheses (e.g., (x2 ∨ x3 ∨ x4)) as a clause, and we call the unnegated/negated variables within the
formula literals.

So more generally, as input we are given a boolean formula over the variables in X that the disjunction of
m clauses, each of which is the conjunction of a sequence of boolean literals. Our goal then is to determine
if there is way of setting the variables (i.e., assigning “true” or “false” to each xi) such that the entire formula
evaluates to “true”. We call such an assignment a satisfying assignment. If there exist at least one assignment
for a formula, we say it is satisfiable. For instance, one satisfying assignment for the above example is x1 =
true, x2 = false, x3 = true, and x4 = true (and there are others, as well). A simple example of a formula that
is not satisfiable is

(x1∨ x2)∧ (x1∨ x2)∧ (x1∨ x2)∧ (x1∨ x2). (2)

Observe that no matter how we set x1 and x2, at least one of the clauses will not be satisfied.
A more structured version of SAT is what is known as k-SAT, which is defined identically but with added

requirement that each clause has exactly k literals. Therefore, the formulas in (1) and (2) are instances of
3-SAT and 2-SAT, respectively. Surprisingly, we can solve 2-SAT in O(n+m), but for any k ≥ 3, there is
no known polynomial time solution. In other words, the jump from k = 2 to k = 3 makes the problem much
harder, and in fact we will show that 3-SAT is at least as hard as generic SAT.

2.2 Traveling Salesman, Hamiltonian Cycles, Eulerian Cycles

One of the most famous hard problems is what called the Traveling Salesman problem, or TSP. Here, we
are given edge-weighted graph G (we typically think of the vertices of the graph as representing cities and
an edge weight of an edge (u,v) as specifying the distance between cities u and v). The goal is to find a
cycle in the graph of minimum the graph that includes every vertex with minimum total weight (this models
a salesman traveling to a set of cities and returning home; ideally he wants to minimize the total distance he
has to travel).

Again, we will formally argue why TSP is hard later on, but to do this, let us first define a slightly
simpler problem known as Hamiltonian Cycle or HAM. Now, we are given an unweighted graph G, and
the goal is to determine whether there exists a cycle in the graph that visits every vertex exactly once. Even
though HAM is somewhat simpler than TSP, HAM is still a hard problem.

As we mentioned a moment ago, the jump from 2-SAT to 3-SAT makes an easy problem into a hard
one. A similar phenomenon occurs with an analogous problem to HAM known as Eulerian Cycle. For the
Eulerian Cycle problem, we are again given a unweighted graph G, but now the objective is to determine if
there exists a path in the graph that starts and ends at the same vertex, includes every edge in the graph, and
does not repeat any edges. Eulerian Cycle is in fact polynomial-time solvable due to the following elegant
characterization: a graph has an eulerian cycle iff the degree of each vertex is even. Therefore in order to
determine if a graph is eulerian, we just need to iterate over each vertex v in V and check to see if degv is
even.

2.3 Matching

A problem we have seen earlier in the semester is that of maximum matching. We primarily focused on
the bipartite setting, but the problem can be defined for general graphs as well: given an undirected graph

#23 -2

G = (V,E), find the largest subset E ′ ⊆ E such that |E ′| ≤ k and there does not exist a vertex v such that
(v,u) ∈ E and (v,w) ∈ E for some w,u ∈ E (the latter is just enforcing that if a vertex is matched, then it is
matched with a unique neighbor).

The above matching problem turns about to be solvable in polynomial time (even when the graph is
not bipartite). However, we can make the problem hard by making it a 3D-matching problem. That is,
the problem is now defined for a graph where edges are now a subset of V ×V ×V (instead of the typical
V ×V ; we typically refer to such a graph as a hypergraph). The problem is defined identically, except now
we require that v belongs to at most one hyper-edge in E ′ (formally, there does not exist two non-identical
hyper-edges (v,u1,u2),(v,u3,u4) ∈ E ′). Making the jump from 2D-matching to 3D-matching makes the
problem hard (this should seem somewhat similar to the jump from 2-SAT to 3-SAT).

3 NP-hardness

For the remainder of the lecture, we will introduce the concept of NP-hardness, which as mentioned earlier,
gives us a means for arguing that a problem is hard. To do this, we will first introduce the problem classes P
and NP.

3.1 The classes P and NP

There is an entire subfield of computer science called complexity theory dedicated to classifying problems
based on different notions of hardness. The most of basic of these classes is that of P, which is the set of
decision problems that can be solved in polynomial time. By decision problem, we mean that the problem
just requires a “yes” or “no” as the output for the problem. Most of the problems we have seen this semester
when formulated as decision problem are in P since we have defined polynomial-time algorithms for them
(e.g., shortest path, minimum spanning tree, max flow, etc.). For example, the decision-problem version of
the shortest path problem would be: given a graph G and a parameter k, does there exist a path from the
source s to sink t that has length at most k (clearly, we can answer this in polynomial time since we can run
Dijkstra’s algorithm, and if the length of the shortest path is less than k, then we output “yes”; if the length
of the shortest path is greater than k, then we output “no”).

A broader class of decision problems that will be of interest to us is that of NP, which stands for non-
deterministic polynomial 1 (note that it does not stand for non-polynomial). The set of problems in NP are
those that can be verified in polynomial time. By verify, we mean that for any instance where the answer is
“yes”, it possible for someone to give us a “certificate” or “proof” that makes it possible for an algorithm
to check in polynomial time that the instance is a yes instance (this “someone” is often referred to as an
oracle). Clearly, any problem in P is also in NP because the certificate the oracle gives us can be empty,
since to verify an instance we can simply use the polynomial time algorithm for problem to prove whether
or not it is a yes instance.

All the hard problems we mentioned in the previous section are also in NP. For example, SAT is in NP
because if there is a satisfying assignment to a formula, an oracle could specify the assignment itself (i,e.,
what each xi ∈ X is set to in the satisfying assignment). Then an algorithm could easy evaluate the formulate
using this assignment to verify that it indeeds evaluate to true. Furthermore, it is easy to implement this
evaluation so that it takes polynomial-time (the algorithm can just step through the formula and directly

1The term “nondeterministic polynomial” comes from an alternate but equivalent definition of the problem class NP (the lan-
guages in NP are those that can be accepted by a polynomial-time nondeterministic turing machine); however, for our purposes,
just think of NP in terms of polynomial-time verification.

#23 -3

P = NP P 6= NP

MST
Shortest Path
Eulerian Cycle

2-SAT
Matching

SAT
HAM

3D-Matching
MST

Shortest Path
Eulerian Cycle

2-SAT
Matching

SAT
HAM

3D-matching

P

NP

Figure 1: Possibilities for the relationship between P and NP.

evaluate each clause). A good exercise is to go through the other hard problems we saw (Hamiltonian
Cycle, 3D-matching) and argue why these problems exist in NP.

The natural question to ask is: Are there problems that are in NP but are not in P? More explicitly, are
there problems that can be verified in polynomial time but cannot be solved in polynomial time? Unfortu-
nately, no one knows the answer to this question. In fact, a resolution to this question is one a greatest open
questions in computer science and and even general mathematics (the Clay Institute would actually pay you
one million dollars if you resolved the problem). A vast majority of computer scientist believe that NP 6= P,
but none of the existing tools make a formal resolution seem reachable in the near future.

Based on our current understanding, there are two possibilities for the relationship between P and NP
(depicted in Figure 1). Either P = NP, and every problem we have discussed in this lecture (even the hard
ones) is in fact solvable in polynomial time. The other (and more likely) possibility is that P6= NP, i.e. P is a
strict subset of NP (recall that we argued that every problem in P is trivially in NP, as well). If this is the the
case, then the hard problems in NP we have discussed lie strictly outside of P and do not have polynomial
time algorithms.

As of now, it is unlikely that there are polynomial time algorithms for SAT, HAM, and 3D-matching,
but given this uncertainty, how do we formally make a statement about their hardness?

3.2 Polynomial time reductions and NP-hard problems

To formalize the statement that “a problem B is at least as hard as hard as another problem A”, we will use
what is called a polynomial time reduction from A to B. The idea is that we design method for transforming
a generic input instance for A into an instance for B. If the done correctly, the transformation is constructed
in such a way so that if we assume we have an efficient solver for B, the structure of the transformed instance
will allow us to map the solution we obtain from this B solver to a correct answer to the original instance
for A. Once the reduction is established, it allows us to claim that if someone was to design an algorithm
that solves problem B in polynomial time, then it would immediately imply a polynomial time algorithm for
problem A (we usually denote this fact as A≤ B).

Figure 2 depicts the above recipe for constructing a reduction from decision problem A to decision
problem B. We first take an input to problem A IA and then transform IA in some way to an instance to
problem B IB (in the figure, this is ALGO 1). We then solve the instance B using a solver for B (this is
ALGO 2). When designing ALGO 2, we assume that we have an algorithm/oracle that can solve an instance

#23 -4

IA: input
instance for
problem A ALGO 1

(transforms IA

to B instance)

IB : input
instance for
problem B ALGO 2

(algorithm that

solves B)

Yes for IB

No for IB No for IA

Yes for IA

Polynomial Time Algorithm for A

Figure 2: Showing problem A is polynomial time reducible to problem B.

of B in polynomial time. Usually ALGO 2 just entails querying the problem B oracle once and returning
the same answer (either yes or no) as our answer to the instance to A (although, it is admissible to do more
complicated constructions for ALGO 2 that involve multiple queries to the Problem B oracle). Regardless,
if the reduction is constructed properly, then the final yes or no that is outputted from ALGO 2 will be the
correct answer for the original input to problem A.

In summary, to define a reduction and argue its correctness, one needs to:

1. Specify polynomial time algorithms ALGO 1 and ALGO 2, i.e., how the input to A is transformed to
a B instance and then what queries are made to the polynomial solver for B.

2. Argue that ALGO 2 outputs yes if and only if IA is a yes instance for problem A.

We will now introduce another class of problems known as NP-hard. A problem B is said to be NP-hard
if for all problem A∈ NP, A is polynomial time reducible to B. Informally, this class consists of all problems
that are at least hard as every problem in NP. Recall that P and NP are restricted to only decision problems,
but this NP-hard class does not have this restriction and contains a much broader class of problems (e.g.
maximization and minimization problems; one can even construct bizarre problems that are both NP-hard
and are at least as hard as the halting problem, i.e., such a problem cannot be solved any computer). However,
there are some problems that both NP-hard and are in NP, and we refer to this sub-class of NP-hard problems
as NP-complete. Figure 3 illustrates the relationship between classes NP, NP-hard, and NP-complete.

It should seem a bit surprsing that there are problems that are at least as hard every single problem in
NP (let alone the fact such a property can be shown). Luckily, it was proved by Stephen Cook and Leonid
Levin in the early 70s that SAT is NP-hard (and therefore also NP-complete since SAT is in NP). The proof
is beyond anything we will talk about in this class, but the consequence of this result is that it allows us to
show that many other problems are also NP-hard by composing input transformations.

More specifically, now that we know that SAT is NP-hard, suppose we would like to show some other
problem B is also NP-hard. Also suppose we are able to show that SAT ≤ B, i.e., SAT is polynomial time
reducible to B. We know that every problem in NP is polynomial time reducible to SAT; therefore, for any
problem A in NP, there is an ALGO 1 that transforms an instance to A problem into a SAT instance ISAT.
Again, we also showed/know SAT ≤ B, and therefore we can then feed ISAT into the reduction we specified
when showing SAT ≤ B. Overall, the process gives us a polynomial time reduction from A to B since the
correctness of each reduction will “propagate” across the SAT transformations to imply a yes for A implies
a yes for B . Also, we know that combined construction still yields a polynomial time transformation (for
ALGO 1) since polynomials are closed under composition.

The punchline is the following: if we know a problem A is NP-hard, it is sufficient to show A ≤ B in
order to establish B is NP-hard, as well. In the next two sections, we will actually get our hands dirty and

#23 -5

MST
Shortest Path
Eulerian Cycle

2-SAT
Matching

SAT
HAM

3D-Matching

P

NP

NP-hardTSP
Max 3D-Matching

NP-complete

Figure 3: Relationships between P, NP, NP-complete, and NP-hard given that P 6= NP.

walk through a couple reductions that show some of the problems mentioned earlier are in fact NP-hard.

3.3 k-SAT ≤ 3-SAT

It was mentioned earlier that 3-SAT is as hard as k-SAT for any k ≥ 3. We will now formally show that
k-SAT ≤ 3-SAT. If we are given that k-SAT is NP-hard, then the discussion from the previous section along
with the following theorem (once established) implies that 3-SAT is NP-hard, as well.

Theorem 1. k-SAT ≤ 3-SAT for k ≥ 3, i.e., k-SAT is polynomial time reducible to 3-SAT.

Proof. Recall for k-SAT, we are given a set of n boolean variables X = {x1, . . . ,xn} and a boolean formula
Fk over these variables in CNF with m clauses such that each clause contains exactly k literals. To perform
our transformation, we will need modify this formula so that it is now an input instance to 3-SAT, i.e., each
clause in the formula contains exactly 3 literals (we will call this transformed formula for 3-SAT F3).

Consider a clause c = (y1 ∨ y2 ∨ . . .∨ yk) in the k-SAT boolean formula (each y j ∈ {xi,xi} for some
xi ∈ X). To construct the corresponding clauses in our 3-SAT formula F3, we add k−3 new variables to the
system c1, . . . ,ck−3 and “break-up ” c into the following k−2 clauses :

(y1∨ y2∨ c1)∧ (c1∨ y3∨ c2)∧ (c2∨ y4∨ c3)∧ . . .∧ (ck−4∨ yk−2∨ ck−3)∧ (ck−3∨ yk−1∨ yk) (3)

If we perform this transformation for each clause in Fk to define our clauses for F3, it is clear that the
resulting formula will indeed by a 3-SAT formula. It is also straight forward that this transformation can be
done in polynomial time (so this completes our description of ALGO 1). Given this instance for 3-SAT, we
define ALGO 2 to simply query our oracle for 3-SAT and return this answer as our answer to the original
k-SAT instance.

Thus, we are left with showing that the Fk is satisfiable if and only if F3 is satisfiable. For the forward
direction, assume that Fk is satisfiable. To show there is satisfying assignment for the corresponding F3
formula, we will use the same setting of xi variables given by the satisfying assignment for Fk, and then
argue that there is a way of setting the added ci variables (the variables we added for each clause) such that
the clauses corresponding to c are satisfied in F3.

#23 -6

More specially, consider a clause c from Fk. c evaluates to true in the given satisfying assignment for
Fk; therefore, there exists some literal y j ∈ c that evaluates to true. Therefore, the clause (c j−2∨ y j ∨ c j−1)
evaluates to true in F3. To satisfy the rest of the clauses that correspond to c in F3, observe that we can set
c1, . . . ,c j−3 to be true and c j−1, . . .ck−3 to be false. If we repeat this process for each clauses c ∈ Fk, the
assignment we produce for our 3-SAT instance will satisfy F3.

For the reverse direction, assume we have a satisfying assignment to F3. For the set of clauses corre-
sponding to a clause c in Fk, it is not too hard to see that there must be at least one y j ∈ c that evaluates to true
from the F3 assignment (the ci variables are not capable of satisfying all of c’s 3-SAT clauses on their own).
Therefore, this implies that if we take the same setting of xi variables from the F3 satisfying assignment,
there will be at least one literal in each clause that evaluates to true. Thus, repeating this argument for each
clause implies a satisfying assignment for Fk, which completes our proof.

3.4 HAM ≤ TSP

(We’ll leave this as a practice problem for now. See page 259 of DPV for a solution. Note that they refer to
HAM as “Rudrata Cycle”).

#23 -7

	Introduction
	Easy versus hard problems
	Satisfiability
	Traveling Salesman, Hamiltonian Cycles, Eulerian Cycles
	Matching

	NP-hardness
	The classes P and NP
	Polynomial time reductions and NP-hard problems
	k-SAT 3-SAT
	HAM TSP

