
COMPSCI 330: Design and Analysis of Algorithms November 25, 2014

Lecture # 25
Lecturer: Debmalya Panigrahi Scribe: Roger Zou

1 Overview

We introduce the Set Cover Problem, and describe a Greedy logn-approximation algorithm for the problem.
We then introduce Polynomial Time Approximation Schemes (PTAS), and apply it to 0-1 Knapsack prob-
lem by convert from its pseudo-polynomial dynamic programming algorithm to a Fully Polynomial Time
Approximation Scheme (FPTAS).

2 Greedy Set Cover

2.1 Introduction

The Set Cover Problem: Given universe X , where |X |= n, and sets S1, . . . ,Sm, where Si ⊆ X , ∀ i. The goal
is to select the minimum number of subsets T such that

⋃
Si∈T Si.

Note that the Vertex Cover Problem reduces to Set Cover: Given G = (V,E), let edge ei ∈ E correspond
to xi ∈ X , and a set Si corresponds to all edges adjacent to vertex vi ∈V .

2.2 Algorithm

Repeat until all elements in X are covered: Add subset covering the maximum number of uncovered ele-
ments to T .

2.3 Analysis

Let OPT be the optimal (NP-Hard) solution to Set Cover. Let t∗ be the number of sets in OPT.
Let n1 be the size of the first set selected by the greedy algorithm. First, note that

n1 ≥
n
t∗

This is true because n1 is the largest set in OPT by construction of the algorithm, and n
t∗ is the average size

of the set. Then the size of the largest set must be at least as large as the size of the average set.

Using the same logic, let ni be the size of the next largest set of vertices still uncovered (the i-th set
selected by the algorithm). Then

ni ≥
n−∑ j<i n j

t∗

Let k be the number of sets picked by the algorithm. To show this is a logn-approximation algorithm,
we need to show that k ∈ O(logn). (It is not known if an algorithm can do better than O(logn)).

25-1

First, observe that

t∗
n1

n
= t∗

(
1
n
+ . . .+

1
n

)
≤ t∗

(
1
n
+

1
n−1

+ . . .+
1

n−n1 +1

)
t∗

n2

n−n1
= t∗

(
1

n−n1
+ . . .+

1
n−n1

)
≤ t∗

(
1

n−n1
+

1
n−n1−1

+ . . .+
1

n−n1−n2−1

)
The pattern continues for all ni.
Then

k = 1+1+ . . .+1 (k times)

=
k

∑
i=1

ni
1
ni

≤
k

∑
i=1

ni
t∗

n−∑ j<i n j

≤ t∗
(

1
n
+

1
n−1

+ . . .+
1

n−n1 +1
+

1
n−n1

+ . . .+
1

n−n1−n2
+ . . .+1

)
= t∗Hn

= t∗O(logn)

where recall the harmonic series Hn is O(logn).

An alternate proof can use the charging method we learned earlier in class.

3 Polynomial Time Approximation Schemes (PTAS)

3.1 Introduction

A PTAS algorithm requires that, for an arbitrarily small ε ...
For a minimization problem: Given any ε > 0, PTAS algorithm ≤ (1+ ε) OPT
For a maximization problem: Given any ε > 0, PTAS algorithm ≥ (1− ε) OPT

Fully Polynomial Time Approximation Schemes (FPTAS): PTAS with time complexity poly(1
ε
,n).

Any problem with a FPTAS solution is weakly NP-Hard. Otherwise, it’s strongly NP-Hard.

3.2 0-1 Knapsack

Recall the NP-Hard 0-1 Knapsack problem. We have items a1,a2, . . .an, each with a size si and profit pi, and
a knapsack of capacity B. The goal is to find subset of items X such that ∑i:ai∈X si ≤ B, and sumi:ai∈X pi is

25-2

maximized. Here we will show that the pseudo-polynomial dynamic programming solution can be converted
to a FPTAS. Thus in some sense this problem is one of the ”easier” NP-Hard problems.

Recall the DP solution. Let A[i, p] be the minimum total size of a set of times having total profit P among
items a1, . . . ,ai. Then

A[i+1, p] =

{
A[i, p] if pi+1 ≥ p

min
{

A[i, p],A[i, p− pi+1 + si+1]
}

if pi+1 ≤ p

Since the maximum possible profit is nP, the DP matrix is n2P. Each entry of the matrix is filled in
constant time. Thus the running time is O(n2P), which is pseudo-polynomial because of P.

3.3 Scaling

Scaling is the technique we’ll use to convert the DP algorithm to a FPTAS.

1. Select k = εP
n , the scaling parameter.

2. p∗i =
⌊ pi

k

⌋
.

3. Run the DP algorithm on P∗.

4. Scale all profits back by k.

The running time is O(n2 ∗ n
ε
) = O(n3 1

ε
).

3.4 Analysis

The claim is that the solution to P∗ lower bounds the optimal solution to P by factor 1− ε . returns k ∗
OPT(P∗). From the scaling, any pi gets converted to

⌊ pi
k

⌋
k. Thus

pi ≤
⌊ pi

k

⌋
k+ k

= p∗i k+ k

So
OPT(P)≤ k ∗OPT(P∗)+ kn

Then

Solution returned by algorithm = k ∗OPT(P∗)

≥ OPT(P)−nk

= OPT(P)− εP

≥ OPT(P)− εOPT(P)

= (1− ε)OPT(P)

So the scaled DP algorithm is a FPTAS.

25-3

