COMPSCI 330: Design and Analysis of Algorithms

December 2, 2014

Lecture # 26

Lecturer: Debmalya Panigrahi

Scribe: Nat Kell

1 Overview

In this lecture, we will examine a technique known as *LP rounding*. We will first describe the technique at a high level and then give examples of LP rounding algorithms for vertex cover and set cover.

2 The Technique

Recall that the goal of approximation is (typically) to design an algorithm for an NP-hard optimization problem that runs in polynomial time¹. It is futile to try to devise an algorithm that outputs the optimal solution for every instance (or else this would show P = NP), but hopefully we can guarantee that the solutions produced by the algorithm are always within some multiplicative factor of the optimal solution (if this factor is α , we say the algorithm is α -approximate). As we have seen, the key to proving the approximation factor of an algorithm is lower bounding the cost of the optimal solution (or upper bounding the cost for maximization problems; to keep things simple, we will assume we are dealing with minimization problems for the rest of the notes).

Linear programming provides us with a means of obtaining both a polynomial time algorithm and a lower bound: There are many algorithms that can solve linear programs in weakly-polynomial time. Furthermore, the optimal solution to the fractional relaxation of an integer program is a lower bound on the optimal integral solution (since an integer solution is also a feasible solution to the factional relaxation, the solution can only improve when we remove the requirement of integrality). Therefore, if we can take an optimal solution to an LP relaxation x^* , specify a method for rounding the fractional values in x^* to integer values, and then show that this rounding procedure can only increase the cost of x^* by a factor of α , then this gives an α -approximate polynomial time algorithm (as long as the rounding procedure runs in polynomial time).

The recipe for designing an LP rounding algorithm is shown in Figure 2. Note that ALGO 1 is the always the same: we use some black-box linear programming solver to obtain a fractional solution. The the intricacies (or magic) of every LP rounding algorithm happens in ALGO 2—designing a procedure that rounds the fractional solution to an integer solution.

3 Vertex cover: Threshold rounding

Recall the vertex cover problem: given a graph G = (V, E), find a subset of vertices $V' \subset V$ of minimum size such that for each $(u, v) \in E$, $u \in$ or $v \in V$. In Lecture 24, we gave a greedy algorithm for vertex cover and showed it is a 2-approximation. We will now see another 2-approximation algorithm that uses LP rounding.

¹Note that there are approximation algorithms for problems that have polynomial-time exact algorithms. For example, one might try to design a $(1 + \varepsilon)$ -approximate algorithm that runs in O(n) time for a problem whose best exact solution runs in $O(n^2)$ time

Figure 1: Outline for designing an LP rounding algorithm. We start with an integer programming formulation of an NP-hard problem, which we then relax to a linear programming formulation. We then solve this relaxed LP for optimal fractional solution OPT_F (ALGO 1). Next, we feed OPT_F into ALGO 2, which rounds the fractional values in OPT_F to obtain an integer solution $SOLN_I$. To do our analysis, we prove that $Cost(SOLN_I)) \le \alpha \cdot Cost(OPT_F)$ to show the entire algorithm is an α approximation (since OPT_F is a lower bound on the optimal solution to our NP-hard problem).

Vertex cover can be formulated as the following integer program:

$$\min \sum_{\nu \in V} x_{\nu} \tag{1}$$

s.t.
$$x_u + x_v \ge 1 \ \forall \ (u, v) \in E$$
 (1)

$$x_{\nu} \in \{0,1\} \forall \nu \in V \tag{2}$$

To formulate the LP relaxation, we simply replace our " $x_v \in \{0, 1\}$ " constraints with $0 \le x_v \le 1$ (although note that the LP can gains no advantage by setting a variable to be larger than 1; therefore, really all we need is the constraint $x_v \ge 0$). As the first step in our rounding algorithm, we will solve the LP relaxation to obtain an optimal fractional solution x^* (which is our OPT_F is the Figure 2).

Next, we round x^* in ALGO 2. For our rounding procedure, we will do the simplest thing one can think of: if $x_v^* \ge 1/2$, round x_v^* up to 1; otherwise, round x_v down to 0. Since we are picking a fixed threshold for the rounding boundary that is the same no matter what x^* we are given, this technique is called *threshold rounding*. We then return this rounded solution \tilde{x} as our integer solution (this is SOLN_I in Figure 2).

We first need establish that integer solution is feasible, i.e., every edge is still covered in \tilde{x} . This follows directly from that fact that x^* is a feasible solution: If there existed an edge $(u, v) \in E$ such that both $\tilde{x}_v = 0$ and $\tilde{x}_u = 0$, then, based on the rounding algorithm, we would have $x_v^* < 1/2$ and $x_u^* < 1/2$. This implies that $x_v^* + x_u^* < 1$, which is a contradiction since constraint (1) ensures $x *_v + x_u^* \ge 1$.

Finally, we argue that this algorithm is indeed a 2-approximation by showing $\sum_{v \in V} \tilde{x}_v \leq 2\sum_{v \in V} x_v^*$. Again, this follows the directly from the rounding procedure. In the worst case, every $x_v^* = 1/2$ for all $v \in V$, implying we round all variables up and double their cost. Therefore, the cost of the \tilde{x} can be at most double the cost of x^* .

4 Set cover: Randomized rounding

(Under construction)