
COMPSCI 330: Design and Analysis of Algorithms December 2, 2014

Lecture # 26
Lecturer: Debmalya Panigrahi Scribe: Nat Kell

1 Overview

In this lecture, we will examine a technique known as LP rounding. We will first describe the technique at a
high level and then give examples of LP rounding algorithms for vertex cover and set cover.

2 The Technique

Recall that the goal of approximation is (typically) to design an algorithm for an NP-hard optimization
problem that runs in polynomial time1. It is futile to try to devise an algorithm that outputs the optimal
solution for every instance (or else this would show P = NP), but hopefully we can guarantee that the
solutions produced by the algorithm are always within some multiplicative factor of the optimal solution
(if this factor is α , we say the algorithm is α-approximate). As we have seen, the key to proving the
approximation factor of an algorithm is lower bounding the cost of the optimal solution (or upper bounding
the cost for maximization problems; to keep things simple, we will assume we are dealing with minimization
problems for the rest of the notes).

Linear programming provides us with a means of obtaining both a polynomial time algorithm and a
lower bound: There are many algorithms that can solve linear programs in weakly-polynomial time. Fur-
thermore, the optimal solution to the fractional relaxation of an integer program is a lower bound on the
optimal integral solution (since an integer solution is also a feasible solution to the factional relaxation, the
solution can only improve when we remove the requirement of integrality). Therefore, if we can take an
optimal solution to an LP relaxation x∗, specify a method for rounding the fractional values in x∗ to integer
values, and then show that this rounding procedure can only increase the cost of x∗ by a factor of α , then this
gives an α-approximate polynomial time algorithm (as long as the rounding procedure runs in polynomial
time).

The recipe for designing an LP rounding algorithm is shown in Figure 2. Note that ALGO 1 is the
always the same: we use some black-box linear programming solver to obtain a fractional solution. The
the intricacies (or magic) of every LP rounding algorithm happens in ALGO 2—designing a procedure that
rounds the fractional solution to an integer solution.

3 Vertex cover: Threshold rounding

Recall the vertex cover problem: given a graph G = (V,E), find a subset of vertices V ′ ⊂V of minimum size
such that for each (u,v) ∈ E, u ∈ or v ∈V . In Lecture 24, we gave a greedy algorithm for vertex cover and
showed it is a 2-approximation. We will now see another 2-approximation algorithm that uses LP rounding.

1Note that there are approximation algorithms for problems that have polynomial-time exact algorithms. For example, one
might try to design a (1+ ε)-approximate algorithm that runs in O(n) time for a problem whose best exact solution runs in O(n2)
time

26-1

LP relaxation
of NP-hard problem Poly-time

LP Sovler

ALGO 1

OPTF

ALGO 2

Round
OPTF

SOLNI

Figure 1: Outline for designing an LP rounding algorithm. We start with an integer programming formulation of
an NP-hard problem, which we then relax to a linear programming formulation. We then solve this relaxed LP for
optimal fractional solution OPTF (ALGO 1). Next, we feed OPTF into ALGO 2, which rounds the fractional values
in OPTF to obtain an integer solution SOLNI . To do our analysis, we prove that Cost(SOLNI))≤ α ·Cost(OPTF) to
show the entire algorithm is an α approximation (since OPTF is a lower bound on the optimal solution to our NP-hard
problem).

Vertex cover can be formulated as the following integer program:

min ∑
v∈V

xv

s.t. xu + xv ≥ 1 ∀ (u,v) ∈ E (1)

xv ∈ {0,1}∀ v ∈V (2)

To formulate the LP relaxation, we simply replace our “xv ∈ {0,1}” constraints with 0 ≤ xv ≤ 1 (although
note that the LP can gains no advantage by setting a variable to be larger than 1; therefore, really all we
need is the constraint xv ≥ 0). As the first step in our rounding algorithm, we will solve the LP relaxation to
obtain an optimal fractional solution x∗ (which is our OPTF is the Figure 2).

Next, we round x∗ in ALGO 2. For our rounding procedure, we will do the simplest thing one can think
of: if x∗v ≥ 1/2, round x∗v up to 1; otherwise, round xv down to 0. Since we are picking a fixed threshold for
the rounding boundary that is the same no matter what x∗ we are given, this technique is called threshold
rounding. We then return this rounded solution x̃ as our integer solution (this is SOLNI in Figure 2).

We first need establish that integer solution is feasible, i.e., every edge is still covered in x̃. This follows
directly from that fact that x∗ is a feasible solution: If there existed an edge (u,v) ∈ E such that both x̃v = 0
and x̃u = 0, then, based on the rounding algorithm, we would have x∗v < 1/2 and x∗u < 1/2. This implies that
x∗v + x∗u < 1, which is a contradiction since constraint (1) ensures x∗v +x∗u ≥ 1.

Finally, we argue that this algorithm is indeed a 2-approximation by showing ∑v∈V x̃v≤ 2∑v∈V x∗v . Again,
this follows the directly from the rounding procedure. In the worst case, every x∗v = 1/2 for all v ∈ V ,
implying we round all variables up and double their cost. Therefore, the cost of the x̃ can be at most double
the cost of x∗.

4 Set cover: Randomized rounding

(Under construction)

26-2

