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Lecture #3
Lecturer: Debmalya Panigrahi Scribe: Nat Kell

1 Overview

In this lecture, we will further examine divide-and-conquer algorithms. First we will define and analyze an
O(n)-time algorithm for the problem of selection: given an n element array A and value k, return the kth
smallest element in the array. Next, we examine a DAC algorithm for multiplying two n×n matrices due to
Strassen. By cleverly reducing the number of subproblems we need to perform in each recursive call, this
algorithm improves upon the naive O(n3)-time approach.

2 Median Finding and Selection

Suppose we are given an n element array A and we wish to find its median. An immediate algorithm to this
problem would be to first sort A using your favorite O(n logn)-time sorting algorithm. Then, we can look
at (n/2)th element in this sorted array to find the median. However, this approach seems to being too much
work—the added time it takes to order all the elements is unnecessary since we’re only interested in finding
the median. Ideally, we could find the median in O(n) time (an algorithm that solves this problem must run
in Ω(n) time; can you argue why?)

Instead of finding the median of A, we will actually solve the problem of selection instead, which is a
slightly more general problem. Specifically, the algorithm is now given a parameter k as input and is asked
to find the kth smallest item in A (i.e., the element we would find at index k if A was sorted). Clearly, solving
selection solves the problem of median finding if we set k = n/2. This more general structure will allow us
to correctly define our conquer step when devising our divide-and-conquer algorithm.

2.1 A DAC Algorithm for Selection

Our goal is to define an algorithm that finds the kth smallest element of an n element A in O(n) time. We
begin by defining the following correct (but as we’ll see) inefficient algorithm SELECTION(A,k):

1. Select a pivot value p ∈ A (for now, we do this arbitrarily). Then, restructure A so that it is the
concatenation of the following three subarrays: all elements less than p, followed by elements equal
to p, and then followed by elements greater than p; call these regions A1, A2, and A3, respectively.
We’ll also denote that |Ai|= ni.

2. If k ≤ n1, we return SELECTION(A1,k). Since A1 contains the n1 smallest elements in A and k ≤ n1,
we know that the kth smallest element in A1 is also the kth smallest element in A. Thus making a
recursive call on A1 that leaves the value of k unchanged will correctly return the desired element.

3. If n1 < k≤ n1+n2, simply return p. Here we know that the kth smallest element lies in A2. Since this
subarray only contains the value p, the desired entry must be the pivot p.
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4. Otherwise, k > n1 + n2, in which case we return SELECTION(A3,k− n1− n2). Now we know our
desired element is in subarray A3; however, because this array is preceded by A1 and A2, we now must
locate the (k− n1− n2)th smallest element in A3 if we want to find the kth smallest element in the
overall array A (this just accounts for the preceding elements that we are essentially “chopping-off”
when we make a recursive call that only examines A3).

This completes the algorithm’s definition (note that here, step 1 defines the divide step, and steps 2-
4 define our conquer step; there is no combine procedure in this case). It should now be clear that this
algorithm is indeed correct; however, if we are not careful as to how we pick our pivot p, the running time
of the algorithm will suffer in the same way we saw quick-sort suffer in the last lecture.

More specifically, let T (n) be the running-time of the algorithm on an n element array. Recall that step
1 (i.e., picking a pivot and restructuring the array) can be done in O(n) time. The running time of steps
2-4 will depend on what case we fall in, but regardless, we can say it is bounded by T (max{n1,n3}) since
we only ever make recursive calls on A1 or A3 (but not both). If we get an even split each time we make a
recursive call and n1 ≈ n3 ≈ n/2, we will be in good shape. Formally, the running time of the algorithm in
this case is given by:

T (n) = T (n/2)+O(n)

≤ c · (n+n/2+n/4+ . . .+1) (1)

= cn · (1+1/2+1/4+ . . .+1/n) (2)

< cn ·2 = O(n), (3)

where c is the constant hidden by the O(n) term in the original recurrence. It should be fairly straightforward
to see why if we expand the recurrence, we obtain line (1). To see why inequality (3) is true, we quickly
review geometric series. Recall (hopefully) that for some real number 0≤ r < 1, we have that

1+ r+ r2 + r3 + . . .=
∞

∑
i=0

ri =
1

1− r
. (4)

For line (2), we have that r = 1/2 when examining the term (1+1/2+1/4+ . . .+1/n). Since this sum is
bounded by ∑

∞
i=0(1/2)i (the latter is an infinite sum whose terms subsumes the finite series in the former),

the closed form for an infinite geometric series given by (4) implies that these terms are bounded by 1/(1−
1/2) = 2.

Turning our attention back to SELECTION, the case where A1 and A3 are roughly equal in size will result
in this ideal running time; however, since we currently have no rule for picking a pivot, there is nothing
preventing, say, n1 = 0 and n3 = n− 1. If this worst case occurs for every recursive call we make, the
running time is now:

T (n) = T (n−1)+O(n)

= c · (n+n−1+n−2+ . . .+1) = O(n2).

Thus, as currently defined, the running time of SELECTION(A,k) is O(n2), which is worse than the
O(n logn) naive sorting approach we first gave. Clearly, if we want to get any pay dirt out of this algorithm,
we’ll have to find a way of picking the pivot so that we maintain at least some balance between the sizes of
A1 and A3.
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2.2 Picking a Good Pivot

As outlined above, we would ideally like to pick a pivot so that n1 ≈ n3 ≈ n/2. The best pivot to pick then
is just the median of A; however, this is a bit circular. Selection is a problem that, at least when k = n/2,
is trying to find the median in the first place! Therefore, the somewhat arcane pivot-finding procedure we
are about to define attempts to find an “approximate” median in O(n) time. If there is at least some balance
between A1 and A3, hopefully we can discard a large enough fraction of the array in each recursive call to
yield our desired O(n) runtime.

Our new pivot procedure, which we’ll call PIVOT-FIND(A), is defined as follows (where again |A|= n):

1. Divide A into n/5 blocks B1, . . . ,Bn/5 each of size 5 (assume for sake simplicity that n is divisible by
5).

2. Sort each of these blocks individually, and so afterwards, the 5 elements in a given block Bi are sorted
with respect to one another. Note that the median of each block is now the third element within that
block.

3. For each block Bi, store Bi’s median in a new array C of size n/5.

4. We then return our pivot to be SELECTION(C,n/10), which is the median of C (n/10 comes from the
fact there are n/5 elements in C, and therefore the midway point in this array will be at n/10).

The most interesting observation to make about this procedure is the fact we are using a recursive call
to SELECTION as our means of picking the pivot. Thus, we are counterintuitively using the very divide-
and-conquer algorithm we are attempting to define as a subroutine when defining our divide step (picking
a pivot). So for example, consider our first recursive call to SELECTION(A,k). By the time PIVOT-FIND(A)
completes, we will have made several cascading calls to SELECTION and PIVOT-FIND on smaller arrays
before even reaching the first recursive conquer steps in our top recursive call (steps 2-4 in SELECTION). By
no means is this a typical approach when defining divide-and-conquer algorithms, but it is a great example of
how one can take an algorithmic paradigm and creatively dovetail standard techniques in order to construct
a faster algorithm.

Also note that this procedure indeed runs in O(n) time. Step 1-2 will take O(n) time since there are n/5
blocks, each of which take O(1) time to sort since they each have a constant number of elements (even if we
use bubble-sort or insertion-sort). Steps 3-4 will take O(n) time, as well, since we can step through all the
blocks in n/5 steps, pluck out each median at a given block’s third location, and then add it to C; hence, the
procedure’s overall running time is in O(n).

Now, let’s see what this new PIVOT-FIND(A) buys us. To do our analysis, consider reordering the blocks
so that they are sorted by their medians. More formally, we specify this ordering as Bφ(1), Bφ(2), . . . ,Bφ(n/5),
where φ is a function that remaps the block indices such that if mi is the median of block Bi, we have that
mφ(i) ≥ mφ( j) for all j < i and mφ(i) ≤ mφ( j) for all j > i. It is important to note that the algorithm is not
actually performing this reordering—we are just defining this structure for sake of analysis.

Observe that the pivot p returned by SELECTION(C,n/10) is the median of block Bφ(n/10). Now, define
the following sets:

• Let S1 be the set of all x ∈ A such that x ∈ Bφ( j), x ≤ mφ( j), and j ≤ n/10 (recall that we defined mi

to be the median of block Bi). Informally, these are elements that exist in the first half of this block
ordering and are less or equal to the median of the block to which they belong.
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B�(1)

B�(2)

...

B�(5)

B�(9)

...

10 14 15 23 40

12 13 17 83 91

20 21 22 30 31

29 31 35 91 99

45 49 50 51 69

11 12 64 67 80

72 73 75 88 89

22 23 81 83 99

10 11 97 98 99

S1 C S2

Figure 1: A diagram illustrating the definitions of Bφ(1), . . . ,Bφ(n/5), C, S1, and S2. Here n = 45, and thus we have
9 blocks in total. Observe that each block is sorted individually and that the blocks themselves are ordered based on
their medians. Array C is outlined in red, and the median of C, circled in pink, would serve as our pivot p. Sets S1 and
S2 are highlighted by the blue and green boxes, respectively. Also observe that all the elements in S1 and S2 are less
than and greater than the pivot, respectively (which is argued formally in Lemma 1).

• Similarly, let S2 be the set of y ∈ A such that y ∈ Bφ( j), y≥ mφ( j), and j ≥ n/10. Likewise, this is the
set of elements that exist in the second half of our block ordering and are no smaller than the medians
of their respective blocks.

Figure 1 illustrates the definitions of these sets. So what is all this structure good for? Remember our
goal is to make sure that both A1 and A3 receive a large enough fraction of the elements. The following
lemma makes use of our block ordering Bφ(1), . . . ,Bφ(n/5) and our newly defined sets S1 and S2 to argue that
if we use PIVOT-FIND to find our pivot, we indeed obtain some balance.

Lemma 1. If we use PIVOT-FIND to pick the pivot p, then max{n1,n3} ≤ 7n/10.

Proof. Our key observations are that S1 ⊆ A1 ∪A2 and S2 ⊆ A2 ∪A3. Here, we will argue that the former
claim is true and show it implies that n3 ≤ 7n/10. We’ll leave establishing S2 ⊆ A2∪A3 and showing that
this implies n1 ≤ 7n/10 as an exercise (although, it should be symmetric to the argument we present here).

Let x ∈ S1. Therefore, x exists in some block Bφ( j) where j ≤ n/10 and is less than or equal to the
median of its block mφ( j). Since j ≤ n/10, mφ( j) must lie in the first half of C and therefore is no greater
than the median of C. Since PIVOT-FIND ensures that p is the median of C, we have that mφ( j) ≤ p. Thus, it
follows that x≤ p, implying that x ∈ A1∪A2, as desired.

To complete the proof, observe that S1 contains 3/5 of the elements in blocks Bφ(1), . . . ,Bφ(n/10), since
for each of these blocks, S1 includes the median and the two preceding elements. Since these blocks account
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for half the elements in entire array A, it follows |S1| = 3n/10. However, we just showed S1 is a subset of
A1 ∪A2, implying that A1 ∪A2 cannot be smaller than 3n/10. This implies that |A3| = n3 can be no larger
than 7n/10 since n1 +n2 +n3 = n.

As mentioned at the start of the proof, a symmetric argument can be made to show n1 ≤ 7n/10. Hence,
we have that max{n1,n3} ≤ 7n/10.

We are now ready to complete our run-time analysis for SELECTION with PIVOT-FIND. Let’s briefly
recall the running times of all the components in a given recursive call of SELECTION(A,k), where again we
denote T (n) to be the total running time of this call if |A|= n.

• Steps 1-3 of PIVOT-FIND, where we divide our array into blocks and create the array of medians C,
takes O(n) time.

• Step 4 of PIVOT-FIND makes a call to SELECTION(C,n/10); since C is an array of size n/5, this will
take T (n/5) time.

• Restructuring the array around the pivot in steps 1-2 of SELECTION takes O(n) time.

• As we argued earlier, steps 2-4 of SELECTION take T (max{n1,n3}) time. By Lemma 1, we know that
this will be at most T (7n/10).

Thus, the overall running time of the algorithm is as follows (we’ll again use c as the constant that is
hidden by the O(n) term that bounds the running times of creating array C and pivoting the array around p).

T (n) = T (7n/10)+T (n/5)+ cn

< cn ·
∞

∑
i=0

(
9
10

)i

(5)

= cn ·10 = O(n), (6)

as desired. You should try to verify inequality (5) (use the tree expansion method; you should get that the
total work done on the kth level of the tree is cn · (9/10)k). Equation (6) follows by the closed form for a
geometric series we saw earlier in equation (4).

A final note: observe that if we had picked the size of each block to be 4 instead of 5, the recurrence
would now become T (n) = T (3n/4)+T (n/4)+O(n). When we expand the recursion tree for this recur-
rence, we are doing cn work at each level of the tree. Since the tree will have O(logn) levels, we instead get
a running time of O(n logn). Thus, the decision to use blocks of 5 was carefully made when designing the
algorithm to avoid getting this extra O(logn) factor. Picking anything greater than 5 will also work, but we
will still get an O(n) time algorithm since doing this will only improve the constant we get on line (6) (and
remember, any algorithm for selection must take Ω(n) time).

3 Matrix Multiplication

Next, we’ll examine a DAC algorithm for the problem of matrix multiplication. Recall that the dot product
of two vectors n-dimensional vectors u = 〈u1, . . . ,un〉 and v = 〈v1, . . . ,vn〉 is defined as u · v = u1v1 +u2v2 +
. . .+ unvn (the sum of the pairwise products). To now define matrix multiplication, let A and B be a m× t
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matrix and a t×n matrix, respectively. We define the matrix product AB as a m×n matrix C whose ith row
and jth column entry is the dot product of the ith row of A with the jth column of B.

If we want to compute such a matrix C, we can do so naively in O(nmt) time. For each of the mn entries
in C, we just directly compute the dot product for this entry. Since we need to sum t scalar products for
each of these dot products, each entry in C takes O(t) time to compute, giving us an overall running time of
O(nmt). When both matrices being multiplied are square n×n matrices, this running time becomes O(n3).
For the rest of the lecture, we will focus on this square-matrix case.

To begin to define a DAC algorithm for this problem, we first need a way of recursively defining matrix
multiplication. Observe that we can essentially treat any n× n matrix like a 2× 2 matrix. Namely, let Ai j

be the n/2× n/2 matrix given by the ith half of the rows and jth half of the columns of a matrix A (so
i, j ∈ {1,2}). So our situation looks like the following:

AB =

(
A11 A12
A21 A22

)(
B11 B12
B21 B22

)
=

(
C11 C12
C21 C22

)
=C.

One can verify that in order to compute C, we can treat these quadrant versions of A and B as 2×2 matrices
and multiply their sub-matrices as if there were just four scalars in each matrix. Namely, we have that

A11B11 +A12B21 =C11,

A11B12 +A12B22 =C12,

A21B11 +A22B21 =C21,

A21B12 +A22B22 =C22. (7)

Since this way of expressing a matrix multiplication is defined in terms of multiplying smaller matrices, this
gives us a DAC algorithm. Our divide step splits both matrices A and B into quadrant matrices, the conquer
step computes the necessary products of these quadrant matrices (as specified above), and on the combine
step we add these products together in order to compute each quadrant of C.

To analyze this algorithm’s running time, let T (n) be the time required to multiply two n×n matrices.
Observe that adding two n× n matrices takes O(n2) time since there are n2 pairwise additions to compute
and each scalar addition takes constant time. Since the algorithm divides the problem such that we are doing
eight n/2×n/2 matrix multiplications and four additions, we can express our running time as follows.

T (n) = 8T (n/2)+4(̇n/2)2

= 8T (n/2)+n2

=
log2 n

∑
i=0

8i(n/2i)2 (8)

= n2 ·
log2 n

∑
i=0

2i

= n2 ·
(

2log2 n+1−1
2−1

)
(9)

≤ 2n3 = O(n3).

Again, you should verify that expanding the recurrence yields line (8). In line (9), we are now using
the closed form for a finite geometric series. In general, if we sum 1+a+a2 + . . .+an for some a≥ 0 and
a 6= 1, we obtain:
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n

∑
i=0

ai =
an+1−1

a−1
. (10)

As a brief aside, let’s show why this formula is true. Observe that if we multiply the lefthand side of (10)
side by (a−1), we get

(a−1) · (1+a+a2 + . . .an) = (a+a2 + . . .+an+1)− (1+a+a2 + . . .+an)

=−1+(a−a)+(a2−a2)+ . . .+(an−an)+an+1

= an+1−1. (11)

Therefore, dividing both the LHS and RHS of (11) by (a− 1) yields the formula in (10). You will need
to use this finite form anytime your base (in this case a) is at least 1. In cases where a is less than one,
the formula for infinite geometric series given by (4) should almost always suffice when doing asymptotic
analysis (as we saw previously in Section 2).

Turning our attention back to our divide-and-conquer algorithm for matrix multiplication, notice that this
algorithm also gives a O(n3) time bound, which is no better than if we naively compute the product using
the triple for-loop approach we mentioned earlier. To improve upon this, we need to reduce the number of
new sub-calls we spawn at each recursive call. Notice we can do this at the cost of extra additions, since
doing so only changes the constant hidden by the additive O(n2) term in the recurrence. Here, we give an
algorithm due to Strassen, which uses seven multiplications at each step.

Specifically, for each recursive call, we will compute the following seven matrices M1, . . . ,M7 (note that
we are still maintaining the definitions for our quadrants Ai j and Bi j).

M1 = (A11 +A22)(B11 +B22) M2 = (A21 +A22)B11

M3 = A11(B12−B22) M4 = A22(B21−B11)

M5 = (A11 +A12)B22 M6 = (A21−A11)(B11 +B12)

M7 = (A12−A22)(B21 +B22).

One can verify (against (7)) that we have:

C11 = M1 +M4−M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1−M2 +M3 +M6.

It is important to observe that, despite doing several more matrix additions and subtractions, we only
do one multiplication for each Mi we compute. Since our new equations for each Ci j only require matrix
additions and no multiplications, this entire computation only preforms seven matrix multiplications.

Hence, our running time for this algorithm is expressed as follows (where c is the constant hidden by
the O(n2) term that accounts for the matrix additions we do for a given recursive call):
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T (n) = 7T (n/2)+ cn2

= cn2 ·
log2 n

∑
i=0

(
7
4

)i

= O(nlog2 7)≈ O(n2.81).

(We’ll leave working out the details of this recurrence as an exercise; again, you need to use (10) to obtain
the closed-form, and from there, simplify using logarithmic change-of-base).

Thus, this gives us a better asymptotic bound than our previous O(n3) time algorithms. Not much
intuition can be given for how we defined these “magical” matrices M1, . . . ,M7. Subject to the constraint
that we could only do one multiplication in each Mi, we just needed to define the Mis to be pieces in a
jig-saw puzzle where it was possible to construct each Ci j using these seven pieces.

4 Overview

In this lecture, we further examined divide-and-conquer algorithms. We first looked at algorithms for the
problem of selection, and showed that by carefully picking a pivot in our divide-step, we were able to drasti-
cally improve our initial O(n2)-time DAC algorithm to a desired O(n)-time algorithm. We then examined the
problem of square-matrix multiplication, and showed how we can reduce of number of sub-calls spawned
at each recursive call by cleverly defining our conquer step.
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