
COMPSCI 330: Design and Analysis of Algorithms September 9, 2014

Lecture # 5
Lecturer: Debmalya Panigrahi Scribe: Roger Zou

1 Overview

Previously we introduced basic definitions and algorithms in graph theory, with a focus on Depth-First
Search (DFS). This lecture, after a brief review of DFS, covers applications of DFS in identifying graph
connectivity structure. Content covered include applying DFS for detecting cycles, definitions for Directed
Acyclic Graphs (DAG) and (Strongly) Connected Components (SCC), and algorithms for efficiently com-
puting Topological Sort and SCC.

2 DFS Review

We will use the following running example. Let G = (V,E) be a directed graph shown bottom left. Suppose
DFS at each iteration alphabetically picks the next vertex to visit. Then T is the path (tree) traversed by DFS
shown bottom right.

Note that the ordering of vertices visited by this DFS at each step of the algorithm is: s a b b a c c a s d d s.

2.1 Pre/Post Order and Edge Types

Recall a pre order of a vertex is the first time a vertex is discovered in the ordered list of DFS visits. A post
order of a vertex is the last time a vertex appears in the list of DFS visits. In the example above, pre(a) = 2,
and post(a) = 8.

We are able to classify edges traversed by DFS from looking at their pre/post orders. Please be aware
that the tree types and pre/post order values are dependent on the exact DFS traversal order. In other words,
there are other valid DFS traversals with different traversal orders and edge types. Below is a chart of edge
types with their corresponding pre/post orders.

5-1

Table 1: Edge Type and Pre / Post Order
Edge Type (u,v) pre/post order
Tree/forward pre(u)< pre(v)< post(v)< post(u)
Back pre(v)< pre(u)< post(u)< post(v)
Cross pre(v)< post(v)< pre(u)< post(u)

3 Acyclicity in Directed Graphs

Using the properties of edge types and pre/post ordering, we can come up with an algorithm to detect
acyclicity in directed graphs. Our approach uses the properties of back edges. The claim is that a graph with
no back edges is equivalent to an acyclic graph. Lets first prove a lemma that will help prove the claim.

Lemma 1. For directed graph G = (V,E) if there exists a cycle u1,u2, . . . ,uk, then at least one of these edges
is a back edge in ANY DFS.

Proof. Suppose you run DFS and have a table of pre/post values. Now sort the vertices in decreasing order
of post values.

Observe that both tree/forward edges and cross edges point forward in this ordering (you can verify this
by looking at the table of edge types and pre/post ordering above). However, back edges point backwards
to a previous vertex in this ordering. Since by assumption these vertices form a cycle, there must be at least
one back edge. Otherwise, there is no way to go from a vertex later in the ordering to a vertex earlier, which
contradicts the assumption of the existence of a cycle.

Theorem 2. For directed graph G = (V,E), G has no back edges ⇐⇒ G is acyclic.

Proof. To prove an if and only if statement, we must show two things: (1) if G has no back edges, then G is
acyclic and (2) if G is acyclic, then G has no back edges.

(As a pedagogical statement on general proof strategy, observe that any statement p =⇒ q is true if and
only if its contrapositive ¬q =⇒ ¬p is also true.)

Thus, lets prove the contrapositive of (1), that if G has a cycle, then G has a back edge. But we just
proved this in Lemma 1.

The second step is proving the contrapositive of (2), that if G has a back edge, then G has a cycle.
Suppose e(u,v) ∈ E is a back edge. Then by definition of back edges there exists a path P from v to u in the
DFS tree. Simply set P← P+{e(u,v)}, and so P is a cycle in G.

Remark 1. Theorem 2 provides good intuition for an efficient algorithm to detect cycles in directed graphs:
Simply do DFS. If at any point you encounter a back edge (which can be determined from pre/post values),
declare the existence of a cycle.

4 Topological Sort and Directed Acyclic Graphs

Definition 1. A Directed Acyclic Graph (DAG) is a directed graph with no cycles.

Definition 2. A Topological Sort of a DAG G = (V,E) is a linear ordering of all v ∈V .

5-2

4.1 Algorithm for Topological sorting of DAGs

Recall the first step of the proof for Lemma 1 orders the vertices of a cycle by decreasing order of post values
in directed graph G = (V,E) However, since DAGs have no cycles, and thus no back edges (as proven in
Theorem 2), we can order the vertices by decreasing post value. This follows from the property that in
DAGs for every e(u,v) ∈ E, post(u)> post(v), since only tree/forward and cross edges exist. This provides
intuition for the following algorithm for computing a topological ordering in a DAG:

1. Given DAG G = (V,E), find its source vs (vertex with largest post value). vs is next in the ordering.

2. V ←V \{vs}

3. Goto Step 1 until G = { /0}

5 (Strong) Connectivity

Definition 3. In a directed graph G = (V,E), vertex u is connected to vertex v if there exists a path from u
to v.

Definition 4. In a directed graph G = (V,E), vertex u is strongly connected to v if there exists a path from
u to v, and path from v to u.

Strong connectivity of vertices in a directed graph G = (V,E) can be thought of as an equivalence
relation. This is seen by demonstrating the reflexivity, transitivity, and symmetry properties of strongly
connected vertices. Let u,v,w ∈V be any vertices in a strongly connected component. Then:

• Reflexivity: trivial path from u to itself.

• Transitivity: if there exists path from u to v, and from v to w, then there exist path from u to w.

• Symmetry: if there exists path from u to v, there exists path from v to u.

Which of these properties does not hold for connectivity in general (not strongly connected)?

5.1 Strong Connected Components (SCC)

Definition 5. In a directed graph G = (V,E), a Strongly Connected Component (SCC) is a maximal subset
C ⊆V s.t. any two vertices u,v ∈C are strongly connected.

Informally, we define maximal set in general to mean the largest subset one can construct to satisfy a
certain property.

We can partition groups of vertices that are strongly connected into SCCs. Thus ANY directed graph
can be decomposed into a DAG on SCCs! From the example directed graph shown above, its SCC is shown
below.

5-3

For directed graph G = (V,E), and its decomposition into a DAG of SCCs, a source SCC Csrc has no
edges from other SCCs going into Csrc. A sink SCC Csink has no edges from Csink going out to other SCCs
in G.

5.2 An Efficient Algorithm for SCCs

To come up with an efficient algorithm to find all the SCCs of a directed graph, note that DFS from any
vertex v in a sink SCC Csink only visits vertices in Csink. Thus, if we have some way of finding such a v, we
can do DFS starting from v, delete all nodes DFS visits, and repeat. However, the problem is finding such a v.

The solution arises when one observes that the vertex of highest post value in the DFS of any graph is a
source vertex, thus residing in a source SCC. By switching the direction of all edges in G to construct new
graph GR, the source vertex in GR (found using DFS) corresponds to a vertex in the sink SCC in G. Then
algorithm is as follows:

Algorithm to compute SCCs in directed graph G = (V,E)

1. Reverse all edges in G to construct graph GR. (Note that this process depends on graph implementa-
tion, and can be nontrivial to implement efficiently).

2. DFS on GR, keeping a table of post values for all vertices. Name the vertex with largest post value v.
This is a vertex in sink SCC in G.

3. DFS from v in G.

4. Let Ci be the set of all vertices visited by DFS starting from v. Set V ←V \Ci

5. Check the post value table (of the vertices remaining in G) and identify the vertex v corresponding to
the largest post value. Goto Step 3 until V = { /0}

Running Time: Constructing GR from G (Step 1) can be performed in O(m). Finding a vertex in the
sink SCC can be done in O(m). These two steps can be done before the main loop (Steps 3-5). Each
iteration i of Steps 3-5 take O(mi), where mi is the size of Ci. Because once a vertex (and associated edges)
are deleted they can never be visited again, this means that O(∑i mi) = O(m). Thus the worst case running
time is O(m).

6 Summary

In this lecture we first reviewed edge types and pre/post values obtained from the Depth-First Search (DFS)
algorithm. Through theoretical results, we proved strong relationships between back edges, acyclicity, and

5-4

topological ordering in directed graphs. Then we demonstrated various applications of DFS in revealing the
connectivity structure of a directed graph. Specifically, we used DFS to efficiently detect cycles in directed
graphs, compute Topological ordering on a Directed Acyclic Graph (DAG), identify Strongly Connected
Components (SCCs), and decompose a general directed graph to a DAG of SCCs.

5-5

